Spelling suggestions: "subject:"transcript factor nnt"" "subject:"transcript factor ntn""
1 |
Elucidating the activation mechanism of the transcription factor DntR using X-ray crystallography and small angle X- ray scattering / Compréhension du mécanisme d'activation du facteur de transcription DntR par cristallographie aux rayons X et diffusion des rayons X aux petits anglesLerche, Michael 18 July 2014 (has links)
Les protéines régulatrices de la transcription de type LysR (LTTR) appartient à la plus grande famille de facteur de transcription chez les procaryotes. Malgré l'importance de cette famille, les informations structurelles sur les protéines pleine-longueur sont très limitées car elles sont souvent insolubles et très difficiles à cristalliser. Les quelques structures existantes, couplés à d'autres analyses biophysiques ont pu montrer que ces protéines s'associent principalement sous forme d'homotétramère comprenant un dimère de dimères. Les dimères s'associent par un large domaine C-terminal dans une position " tête-bêche " et sont reliés en " tête-à-tête " par leurs domaines N-terminal et sont activées par la liaison de molécules inductrices. Le domaine dimèrique C-terminal qui contient la poche de liaison inductrice (Inducer Binding Cavity : IBC) est appelé domaine de liaison inductrice (Inducer Binding Domain : IBD), tandis que les dimères N-terminaux se lient chacun à une région de l'ADN par un motif hélice-tour-hélice ‘winged' (wHTH). Contrairement à d'autres facteurs de transcription, les protéines LTTR ne régulent pas l'expression par association/dissociation avec l'ADN. Ils se lient à l'ADN dans leur état actif et inactif. Le consensus actuel est qu'elles régulent l'expression des gènes par d'importants changements conformationnels qui relâchent la liaison avec l'ADN. À ce jour, aucune structure de LTTR pleine longueur homotétramérique dans une conformation active ou inactive n'a été résolu par cristallographie, et leur mécanisme d'action sur le gène reste structurellement non caractérisé.Le travail décrit dans cette thèse a utilisé DntR de la famille des LTTR. La première structure cristalline de l'apo-DntRis est présentée ici, ainsi que la structure du mutant H169TDntR, qui présente une activité en l'absence d'inducteur. L'analyse par fluorimétrie de différentiel thermique (TSA) montre que la température de dénaturation du mutant H169TDntR est similaire à DntR IBDs lié à une molécule inductrice. La comparaison de ces deux structures avec celle de DntR lié au salicylate révèle que la protéine dans son état apo adopte une conformation compacte de l'IBC, ce qui empêche la liaison d'une molécule inductrice. Dans l'IBC, les mouvements des résidus H169 et H206 permettent la liaison à l'inducteur. Pour éviter les limitations dues à l'empaquetage du cristal nous avons étudié la structure DntR en solution par diffusion des rayons X aux petits angles (SAXS).L'étude SAXS de DntR révèle que dans son état inactif, la conformation apo adopte un repliement plus compact par rapport à celle de la structure cristalline. Tout en maintenant un noyau compact de C-terminal, le repliement du dimère de wHTH est beaucoup plus fermé que dans la structure cristalline et adopte une conformation qui entrainerait une flexion beaucoup plus importante de l'ADN lié que postulé précédemment. Les études du mutant H169TDntR constitué actif ont confirmé comme l'analyse par TSA l'a suggéré que, la structure de cette protéine est nettement différente en solution que sous forme cristalline.En effet, la structure en solution de H169TDntR est très semblable à la forme ouverte de l'homotétramères observés dans la structure cristalline de TsaR. L'hypothèse de départ était que, lors de l'activation de LTTR, cet homotétramère subirait un changement de conformation d'une forme compact vers une forme ouverte, qui se traduirait par un relâchement de l'ADN lié. Cette hypothèse a été confirmée par des études de diffusion en solution de DntR activée par un inducteur.Le travail présenté dans cette thèse valide l'hypothèse précédemment, que lors de l'activation de DntR, et probablement tous les LTTRs homotétramériques, entraine un changement de conformation d'une forme compacte vers une forme beaucoup plus ouverte et permet l'accès aux régions promotrices par l'ARN polymerase et ainsi initier la transcription. / LysR type transcriptional regulatory (LTTR) proteins are the largest family of transcription factors amongst prokaryotes. In spite of the size of the family, structural information on full-length constructs of these proteins is very limited as they are often insoluble and very difficult to crystallize. From the few existing crystal structures, coupled with other biophysical evidence, it is known that the proteins mainly associate as homotetramers comprising a dimer of dimers. The dimers associate through large C-terminal domains in a “head-to-tail” fashion and are connected “head-to-head” through their N-terminal domains and the resulting homotetramers are activated by the binding of inducer molecules. Each C-terminal domain contain an inducer binding cavity (IBC) and is denoted an inducer binding domain (IBD), while the N-terminal dimers each bind a region of DNA via a winged helix-turn-helix (wHTH) motif.Unlike other transcription factors, LTTR proteins do not regulate expression by associating or disassociating with DNA. They bind to DNA in both their active and inactive states and the current consensus is that they regulate gene expression through large conformational changes that relax the bending of bound DNA. However, to this date, no crystal structures of a full length homotetrameric LTTR in both an active and inactive conformation exists, and thus their mechanism of transcriptional regulation remains structurally uncharacterized.The work described in this thesis has used the LTTR DntR as a model protein to futher structurally characterizes the activation mechanism of LTTR proteins. The first crystal structure of apo-DntR is presented as is the crystal structure of H169TDntR, a mutant which shows activity in the absence of an inducer molecule. Thermofluor assays performed on this mutant, show that it has a melting temperature similar to that of inducer bound DntR. Comparison of these crystal structures with the crystal structure of salicylate-bound DntR reveals that the protein in its apo-state adopts a compact IBC, which precludes the binding of an inducer molecule. Despite the evidence of thermofluor assays, the crystal structure of H169TDntR is very similar to that of apo-DntR suggesting that crystal packing effects impose strong limitations on the use of crystallography to elucidate the active and inactive conformations of DntR. Small Angle X-ray Scattering (SAXS) was thus used to study the structure of DntR in solution.SAXS study reveals that in solution DntR in its inactive apo-state is found in a slightly different conformation compared to that seen in its crystal structure. While maintaining a compact tetrameric C-terminal core the DNA binding wHTH dimers pack much closer to this than seen in the crystal structure and adopt a conformation that would result in much higher bending of bound DNA than previously postulated.SAXS studies of the constitutively active H169TDntR mutant confirm, as thermofluor assays had suggested, that in solution the structure of this protein is markedly different from its crystal structure. Indeed the solution structure of H169TDntR appears very like that of open-form homotetramers seen in the crystal structure of TsaR. This same effect was observed in solution scattering studies of inducer bound-and thus activated, DntR.The work presented in this thesis thus appears to confirm, as previously hypothesized, that upon activation DntR, and presumably all homotetrameric LTTRs, undergo a conformational change from a compact, to a much more open form that allows the relaxation of the bound DNA promoter region, exposing it to solvent and allows RNA polymerase access and thus initiate transcription.
|
Page generated in 0.0536 seconds