Spelling suggestions: "subject:"btransfer off csrknowledge"" "subject:"btransfer off bothknowledge""
31 |
Τα μαθηματικά στο χώρο εργασίας και η σύνδεσή τους με την τυπική εκπαίδευσηΤριανταφύλλου, Χρυσαυγή 19 August 2010 (has links)
Η παρούσα διδακτορική διατριβή επικεντρώνεται σε δύο ερευνητικά προβλήματα που αποτελούν τα αντικείμενα δύο ερευνητικών φάσεων. Στην Α΄ ερευνητική φάση, διάρκειας ενός έτους, ασχολείται με τη διερεύνηση μαθηματικών πρακτικών σε τρεις ομάδες τεχνικών του Οργανισμού Τηλεπικοινωνιών Ελλάδας αναζητώντας παράλληλα την ύπαρξη αμετάβλητων στοιχείων της μαθηματικής επιστήμης τα οποία διαπερνούν την ακαδημαϊκή και την παρούσα εργασιακή κοινότητα. Στη Β΄ ερευνητική φάση, διάρκειας οκτώ μηνών, εξετάζει κάτω και υπό ποιες προϋποθέσεις πέντε σπουδαστές ενός Τεχνολογικού Εκπαιδευτικού Ιδρύματος που πραγματοποιούν την πρακτική τους άσκηση στον ίδιο Οργανισμό είναι σε θέση να αναγνωρίσουν τα αμετάβλητα αυτά στοιχεία.
Στην Α΄ ερευνητική φάση η Θεωρία Δραστηριότητας των Vygotsky, Leont’ ev και των συνεχιστών του έργου τους, Engeström & Cole, αποτελεί τη θεωρητική βάση της εργασίας. Τα ερευνητικά δεδομένα προκύπτουν από εθνογραφικής φύσης παρατηρήσεις αλλά και συζητήσεις με τους συμμετέχοντες. Η μαθηματική δραστηριότητα που αναγνωρίσαμε στο χώρο εργασίας ήταν πολύπλοκη και πλούσια αλλά πλήρως ενταγμένη στο πλαίσιο αναφοράς της. Ειδικότερα, αναγνωρίσαμε και ταξινομήσαμε τα μαθηματικά εργαλεία τα οποία διαμεσολαβούσαν στις κεντρικές καθημερινές εργασιακές δραστηριότητες των τεχνικών και αναδείξαμε τους τρόπους με τους οποίους αυτά εμπλέκονταν με τα τεχνικής φύσης εργαλεία τους. Ταυτόχρονα αναγνωρίσαμε αμετάβλητα μαθηματικά στοιχεία στις μαθηματικές έννοιες, στο τρόπο κατανόησής τους από τους τεχνικούς και σε μαθηματικές διαδικασίες που οι ίδιοι χρησιμοποιούσαν για την επίτευξη των εργασιακών τους στόχων.
Στην Β΄ ερευνητική φάση τα ερευνητικά δεδομένα προέρχονται από διερευνητικής και παρεμβατικής φύσης συνεντεύξεις με τους σπουδαστές και εθνογραφικές παρατηρήσεις. Μέσα από τις διερευνητικής φύσης συνεντεύξεις καταγράψαμε τις στάσεις των σπουδαστών ως μέλη της σπουδαστικής και της συγκεκριμένης εργασιακής κοινότητας και αναζητήσαμε μαθηματικές πρακτικές που ανέπτυξαν ως μαθητευόμενοι στην παρούσα εργασιακή τους κοινότητα. Οι μαθηματικές πρακτικές που ανέπτυξαν οι σπουδαστές, έστω και ασυνείδητα, είχαν άμεση εξάρτηση από τα εργαλεία και τους εργασιακούς στόχους της κάθε κοινότητας και αφορούσαν την ικανότητα οπτικοποίησης και την ανάγνωση και ερμηνεία σύνθετων οπτικών αναπαραστάσεων. Τέλος, μέσα από μια σειρά παρεμβατικής φύσης συνεντεύξεων αναλύσαμε με εργαλεία σημειωτικής τη δραστηριότητα που ανέπτυξαν οι ίδιοι σπουδαστές στην προσπάθεια ερμηνείας αυθεντικών αναπαραστάσεων με σκοπό τη σύνδεση κοινών μαθηματικών εννοιών που συναντώνται στην ακαδημαϊκή και στην παρούσα εργασιακή κοινότητα. Οι έννοιες αυτές αφορούσαν το θεσιακό σύστημα αρίθμησης και τη συναρτησιακή σχέση αντίστασης, μήκους, διαμέτρου χάλκινων καλωδίων. Καταλήγουμε, καταγράφοντας τα χαρακτηριστικά που προάγουν και αναστέλλουν, τη μεταφορά της γνώσης στο νέο κοινωνικό-πολιτισμικό πλαίσιο.
Στο τέλος της διατριβής καταγράφονται και αναλύονται οι εκπαιδευτικές προεκτάσεις της έρευνας. / This dissertation thesis focuses on two different research problems carried out in two research phases. In the first research phase, lasting one year, it focuses on the exploration –identification of mathematical practices of three different groups of technicians of the Greek Telecommunication Organization. In parallel, it investigates the existence of invaried mathematical elements that are crossing the academic and the current workplace community. In the second research face, lasting eight months, it investigates how and whether five students of a Technological Educational Institute who were doing their practicum in this setting could recognize these invariant mathematical elements.
In the first research phase, the theoretical framework is guided by Vygotsky and Leont’ev work on Activity theory and their followers, Engeström & Cole. Our data are coming from ethnographic observations and discussions with the participants. The mathematical activity we identified was complex and rich but completely contextual. Especially, we recognized and categorized the mediated mathematical tools in technicians’ central workplace activities and we were showing off how these are interrelated with their physical mediated tools. At the same time we recognized invariant mathematical elements in the category of mathematical concepts, the meanings the technicians attributed to these concepts and in the category of mathematical processes they were using in order to achieve their workplace goals.
In the second research phase, our data are coming from eexploratory and intervention interviews with the students and ethnographic observations. In the exploratory interviews we recorded their experiences and their attitudes as members of the academic and the workplace community and we identified mathematical practices they developed as apprentice members of this community. Τhe main mathematical practices the students developed, mainly unconsciously, were attached to the tools and the goals of the workplace community and referring to visualization and reading and interpreting complex visual representations. Finally, through the intervention interviews, we analyzed with the help of semiotic tools the activity the same students developed in order to interpret mathematical objects that are common to the academic and workplace community. The mathematical objects were referring to the place value concept and the functional relation between the resistance, the length and the diameter of the copper wires. In the conclusion, we recorded the characteristics that support and block students’ transfer of knowledge in their new socio-cultural context.
In the end of the thesis we discuss and analyze the educational implications of our findings.
|
32 |
Effects of chess instruction on the intellectual development of grade R leanersBasson, Mary Rose 02 1900 (has links)
Text in English / The literature review indicated similarities between education and chess
playing and possible transfer of knowledge between these two different domains. A
link was then suggested between some aspects of intellectual abilities and chess
instruction in children, but not in adults (Frydman & Lynn, 1992; Waters, Doll & Mayr,
1987). In this research study the aim was to explore the relationship between chess
playing and cognitive and intellectual development in Grade R learners at
Garsieland. Therefore the positive influence that chess playing brings to bear on the
intelligence of 64 Grade R learners (as measured on intelligence scales) was
investigated. The data was collected through short biographical questionnaires and
psychometric tests and the participants in both groups were assessed on two
occasions.
The study suggested that chess instruction exerted a positive (small) effect on
Performance intelligence and subsequently on the Global scale of the Junior South
African Intelligence Scales. The children in both groups also exhibited improved
cognitive development after the 40 week period during 2009. / Psychology / M.A. (Psychology)
|
33 |
An investigation into problem solving skills in calculus : the case of Unisa first year studentsMugisha, Stella 02 1900 (has links)
Students’ performances in mathematics in an Open Distant Learning setting have not always been impressive. An exploratory study into the problem solving skills of the University of South Africa students in the Calculus module MAT112 is being conducted using past examinations scripts between 2006 and 2009. The study re-assesses the work done in the end-of-year Calculus examinations, by both looking at the distribution of marks awarded and assigning new scores based on an assessment rubric adapted for the problem at hand. Further assessment of qualitative dimensions that is important for problem solving in Calculus is developed from the data obtained from the assessment rubric. Using factor analysis, a hesitation factor, transfer-of-knowledge factor as well as ingenuity factor, are identified in successful Calculus problem solving. The study proposes two conceptual models; the first is to guide students in solving Calculus problems while the second one is meant to assist lecturers in the assessment of students of Calculus. / Science and Technology Education / M. Ed. (Technology Education)
|
Page generated in 0.0608 seconds