• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de l'éruption d'avril 2007 du Piton de la Fournaise (île de la Réunion) à partir de données d'interférométrie RADAR et GPS, développement et application de procédures de modélisation / The April 2007 eruption of the Piton de la Fournaise (Réunion Island), study from radar interferometry and GPS data, development and application of modelling procedures

Augier, Aurélien 19 December 2011 (has links)
L’éruption d’avril 2007 du Piton de la Fournaise (Île de la Réunion, Océan Indien) a été marquée par les plus gros volumes de lave émis de ces deux derniers siècles, ainsi que par l’effondrement du cratère sommital (le Dolomieu) sur plus de 300 mètres de haut. Des données d’interférométrie radar (InSAR) montrent que les déplacements associés à cette éruption sont inhabituels pour deux raisons : (1) ils ont affecté l’ensemble de l’enclos Fouqué durant l’éruption, (2) deux motifs de déformation ont persisté plus d’un an après la fin de l’éruption. Le premier résulte d’une subsidence centripète du cône central et le second d’un glissement vers l’est du flanc est du volcan. Une méthode, appelée tomographie de déplacements, a été développée pour modéliser les déplacements, basée sur une discrétisation du sous-sol en sources unitaires, et sur la minimisation de deux fonctions coût. Elle permet de trouver une répartition compacte des variations de volume des sources unitaires permettant de reproduire au mieux les déplacements observés. En parallèle, la procédure NA-MBEM, une méthode de modélisation basée sur la combinaison d’un modèle numérique (MBEM) et d’une inversion de type Monte Carlo (NA), a été modifiée pour diminuer le temps de calcul nécessaire à l’obtention d’un bon modèle, et nous montrons que l’utilisation de données temporellement interpolées permet d’améliorer les résultats d’inversion. L’application des deux méthodes de modélisation aux données de déplacements de l’éruption d’avril 2007, montre que durant la période post-éruptive, la subsidence du cône central est provoquée par une source localisée de manière superficielle sous le cône central. Cette source est interprétée comme un système hydrothermal en déflation, dont le drainage aurait été amorcé par l’effondrement du Dolomieu. Les déplacements du flanc est seraient dus à deux sources différentes, toutes les deux superficielles et parallèles à la topographie. L’une est interprétée comme un réservoir temporaire en cours de vidange durant la fin de l’ éruption, et l’autre comme un niveau de glissement sur lequel glisserait le flanc est. Enfin, nous proposons un modèle préliminaire des déplacements ayant eu lieu durant l’éruption, ainsi qu’un scénario de la succession de tous les événements à l’origine des déformations enregistrées entre le 30 mars 2007 et juin 2008. / The April 2007 eruption of Piton de la Fournaise (Réunion Island, Indian Ocean) was characterised by the largest lava emission in the past two centuries, and by a 300 m deep caldera collapse at the summit craters (the Dolomieu). Synthetic aperture radar interferometry (InSAR) data show complex displacements associated with this eruption, which are unusual for two reasons : (i) the whole Enclos Fouqué was affected during the eruption, (ii) two deformation patterns persist more than one year after the end of the eruption. The first signal results from subsidence of the summit area, and the second from a sliding of the volcano’s eastern flank towards the East. A method, called displacement tomography, was developed to model these displacements. It is based on discretization of the volcano’s interior into unitary sources, and on a minimisation of two cost functions to find a compact repartition of the volumetric variations of these sources, which best reproduce the observed displacements. On the other hand, the NA-MBEM procedure (a modelling procedure based on a combination of a fully 3D boundary element method and a Monte Carlo inversion procedure), was improved to reduce the necessary computational time to obtain satisfying results. Furthermore, we show that temporal interpolation of the data improves the inversion results. The application of both modelling methods on the April 2007 displacement data, shows that during the post-eruptive period, the subsidence of the central cone is caused by a shallow source, located under the cone. This source is interpreted as a deflating hydrothermal system, whose drainage could have begun during the Dolomieu collapse. The eastern flank displacements could be the consequence of two sources, both shallow and parallel to the topography. The first one is interpreted as a temporary magma chamber, which is emptying during the end of the eruption. The second one is interpreted as a layer on which the eastern flank was sliding. Finally, we propose a preliminary model of the displacements that occurred during the eruption, and a scenario of the successive events causing the displacements recorded between March 30, 2007, and June 2008.
2

Transferts de magma au volcan du Piton de la Fournaise déterminés par la modélisation 3D de données d'interférométrie radar entre 1998 et 2000

Fukushima, Yo 16 December 2005 (has links) (PDF)
Après cinq ans et demi de sommeil, le volcan du Piton de la Fournaise (île de la Réunion, Océan Indien) est entré dans un nouveau cycle d'activité en mars 1998. Des données d'interférométrie radar (InSAR) montrent que des déplacements complexes sont associés aux cinq premières éruptions du cycle survenues entre 1998 et 2000. Une méthode a été développée pour déterminer des géométries réalistes et les surpressions des intrusions de dykes à partir de données InSAR. Cette méthode est basée sur la combinaison d'une méthode d'éléments frontières 3D et d'une inversion de type Monte Carlo. Les caractéristiques du bruit des données sont prises en compte dans les inversions. Des tests synthétiques montrent qu'un modèle est retrouvé avec succès dans la limite d'intervalles de confiance étroits. Il a été montré que négliger la topographie induit une erreur de modélisation en profondeur et une surestimation des surpressions ou des ouvertures. L'application de la méthode à chaque éruption requiert des paramétrisations spécifiques des modèles. Dans certains cas, un dyke incurvé en surface doit être introduit, dans d'autres, l'inversion simultanée de deux dykes est nécessaire. La plupart des dykes déterminés ont un pendage vers la mer de 65 degrés. Le dyke associé à la première éruption du cycle (mars 1998) s'enracine au niveau de la mer (2600m sous le sommet), tandis que les dykes suivants sont situés à moins de 1000m sous la surface du sol. La forme latéralement allongée des dykes, les déformations pré-éruptives et les essaims sismiques peuvent être expliqués par un niveau de flottabilité neutre situé à moins de 1000m sous la surface. Ceci est cohérent avec la présence de réservoirs magmatiques à ce niveau. La périodicité spatiale des intrusions de dykes, du flanc nord au flanc sud, est cohérente avec les modèles de transfert de contraintes. Finalement, des analyses en terme de contraintes de Coulomb montrent que les cinq éruptions modélisées ont principalement favorisé le glissement sur des plans potentiels subhorizontaux situés entre 1000 et 1500m au dessus du niveau de la mer.
3

Etude de l'éruption d'avril 2007 du Piton de la Fournaise (île de la Réunion) à partir de données d'interférométrie RADAR et GPS, développement et application de procédures de modélisation

Augier, Aurélien 19 December 2011 (has links) (PDF)
L'éruption d'avril 2007 du Piton de la Fournaise (Île de la Réunion, Océan Indien) a été marquée par les plus gros volumes de lave émis de ces deux derniers siècles, ainsi que par l'effondrement du cratère sommital (le Dolomieu) sur plus de 300 mètres de haut. Des données d'interférométrie radar (InSAR) montrent que les déplacements associés à cette éruption sont inhabituels pour deux raisons : (1) ils ont affecté l'ensemble de l'enclos Fouqué durant l'éruption, (2) deux motifs de déformation ont persisté plus d'un an après la fin de l'éruption. Le premier résulte d'une subsidence centripète du cône central et le second d'un glissement vers l'est du flanc est du volcan. Une méthode, appelée tomographie de déplacements, a été développée pour modéliser les déplacements, basée sur une discrétisation du sous-sol en sources unitaires, et sur la minimisation de deux fonctions coût. Elle permet de trouver une répartition compacte des variations de volume des sources unitaires permettant de reproduire au mieux les déplacements observés. En parallèle, la procédure NA-MBEM, une méthode de modélisation basée sur la combinaison d'un modèle numérique (MBEM) et d'une inversion de type Monte Carlo (NA), a été modifiée pour diminuer le temps de calcul nécessaire à l'obtention d'un bon modèle, et nous montrons que l'utilisation de données temporellement interpolées permet d'améliorer les résultats d'inversion. L'application des deux méthodes de modélisation aux données de déplacements de l'éruption d'avril 2007, montre que durant la période post-éruptive, la subsidence du cône central est provoquée par une source localisée de manière superficielle sous le cône central. Cette source est interprétée comme un système hydrothermal en déflation, dont le drainage aurait été amorcé par l'effondrement du Dolomieu. Les déplacements du flanc est seraient dus à deux sources différentes, toutes les deux superficielles et parallèles à la topographie. L'une est interprétée comme un réservoir temporaire en cours de vidange durant la fin de l' éruption, et l'autre comme un niveau de glissement sur lequel glisserait le flanc est. Enfin, nous proposons un modèle préliminaire des déplacements ayant eu lieu durant l'éruption, ainsi qu'un scénario de la succession de tous les événements à l'origine des déformations enregistrées entre le 30 mars 2007 et juin 2008.

Page generated in 0.3703 seconds