• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reconhecimento não-intrusivo de equipamentos elétricos empregando projeção vetorial / Non-intrusive electrical appliances recognition using vector projection

Borin, Vinicius Pozzobon 19 February 2016 (has links)
Fundação de Amparo a Pesquisa no Estado do Rio Grande do Sul / Electricity consumption in homes and workplaces has been growing steadily over the decades and attitudes to reduce these costs should be taken. An interesting solution is to provide to electricity users, and also to the energy company, detailed data of individual consumption of each electrical appliance. To accomplish this, researchers in the field have focused their efforts on non-intrusive methods of load identification, where a single energy meter is able to desagreggate the appliances by monitoring the total consumption of electricity of that location. Non-intrusive methods are easy to install and demand little maintenance, but require a robust method for identifying these loads. Therefore, the aim of this work is to investigate nonintrusive methods of recognition of electrical appliances to find the desaggregated consumption of these loads. Among these methods, there are the already widely used image recognition pattern methods, that now are been used also to detect electrical devices. In this paper, two of these techniques are discussed, the Principal Component Analisys, a classical method in the literature, and the Vector Projection Length, a completely new method and never used in the loads recognition field before. Current and voltage data were collected from 16 residential appliances, involving all types of loads (resistive, inductive, electronic and hybrid/other types). These data were used as training samples and test samples (unknown samples). A study is carried out using the current and also the power, independently, as load signatures. Also, a comparative analysis of the results of signatures in the time domain and time-frequency (Stowkwell transform) is conducted. As the main contributions to this work, we verified that the Vector Projection Length for load identification is quite feasible, with results up to 96% of tested appliances being identified. However, the results with Principal Component Analisys did not presented the same performance, reaching only 81% of accuracy rate. Comparing the signatures, it became clear that one should use the current in the time-frequency domain for better performance. Neither the use of power, or the time domain obtained satisfactory results of load identification when applying image pattern recognition techniques to load recognition. / O consumo de eletricidade em residências e ambientes de trabalho vem crescendo continuamente ao longo das décadas e atitudes para reduzir estes gastos devem ser tomadas. Uma solução interessante é fornecer aos usuários de energia elétrica, e também à própria concessionária, dados detalhados de consumo individual de cada equipamento elétrico. Para alcançar este objetivo, pesquisadores na área tem focado seus esforços em métodos não-intrusivos de identificação das cargas (equipamentos elétricos), onde um único medidor de energia é capaz de desagregar os equipamentos através do monitoramento do consumo total de energia elétrica daquele local. Métodos não-intrusivos são de fácil instalação e de pouca manutenção, porém requerem um robusto método de identificação destas cargas. Portanto, o objetivo deste trabalho é investigar métodos não-intrusivos de reconhecimento de equipamentos elétricos para encontrar o consumo desagregado destas cargas. Dentre estes métodos, existem os já muito utilizados no reconhecimento de padrões em imagens, mas que agora tem sido também usados para detectar cargas elétricas. Neste trabalho duas destas técnicas são abordadas, a Principal Component Analisys, método clássico na literatura, e o Vector Projection Length, um método completamente novo e nunca usado no reconhecimento de cargas. Coletou-se dados de corrente e tensão de 16 equipamentos elétricos residenciais dos mais variados tipos, envolvendo todos os tipos de cargas existentes (resistivas, indutivas, eletrônicas e híbridas/outros tipos). Estes dados coletados foram utilizados como amostras de treinamento e amostras de teste (amostras desconhecidas). Como assinatura das cargas é realizado um estudo empregando corrente e também potência, de forma independente. Ainda, uma análise comparativa de resultados das assinaturas no domínio do tempo e do tempo-frequência (Transformada de Stowkwell) é conduzido. Como principais contribuições para este trabalho obteve-se que o uso do Vector Projection Length na identificação de equipamentos é bastante viável, com resultados de até 96% dos equipamentos testados sendo identificados. Já os resultados com o Principal Component Analisys ficaram abaixo de seu concorrente, atingindo 81% de taxa de acertos. Comparando as assinaturas, ficou claro que deve-se utilizar a corrente no domínio do tempo-frequência para uma melhor performance. Nem o uso da potência, nem o domínio do tempo obtiveram resultados satisfatórios de identificação quando empregados.
2

Artificial neural network and Stockwell transform for fault location in transmission lines / Uso de redes neurais artificiais e transformada de Stockwell na localizaÃÃo de faltas em linhas de transmissÃo

Saulo Cunha AraÃjo de Souza 26 June 2015 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / This paper presents an automatic fault location method in transmission lines based on the Travelling Waves Theory (TWT) using the Stockwell Transform (ST) to determine the travelling waves propagation time and the dominant frequency of transient signals generated by faults. The method considers the case where there is no communication between terminals or loss of synchronism between the devices responsible for estimating the location of faults using, therefore, only data from one terminal. Single-phase faults only involving one of the phases and the earth area evaluated, which occur in the first half of a transmission line of unknown parameters. It is observed that the method (i) wasnât sensitive to fault resistance variations and inception angle and (ii) the obtained results presented errors between 0,10% and 5,82% for faults that occurred between 7km and 99km from the monitoring terminal. To improve the accuracy of estimating the fault location, an Artificial Neural Network (ANN) of the type MLP (Multi-Layer Perceptron) is designed, and trained with characteristics extracted from the faulty signals using ST. The ATP (Alternative Transient Program) software was adopted for simulation of a three phase transmission line which voltage signals were sampled at 200kHz. The simulations were performed exploring 1280 combinations of the following parameters: fault locations, fault resistances and inception angle. The method was developed using the software MATLABÂ. According to the obtained results, the combination of ST with ANN presented better results than the application of ST and TWT. Such improvement is highlighted for the estimation of fault location at greater distances from the monitoring terminal, with errors between 0,02% and 1,56% for faults that occurred between 7km and 99km from the monitoring terminal. / Este trabalho apresenta um mÃtodo automÃtico de localizaÃÃo de faltas em linhas de transmissÃo baseado na Teoria das Ondas Viajantes (TOV) utilizando a Transformada de Stockwell (TS) para determinaÃÃo dos tempos de propagaÃÃo das ondas viajantes e da frequÃncia dominante dos sinais transitÃrios gerados pelas situaÃÃes de falta. O mÃtodo considera o caso em que nÃo hà comunicaÃÃo entre terminais ou hà perda de sincronismo entre os equipamentos responsÃveis pela estimaÃÃo da localizaÃÃo das faltas utilizando, portanto, dados provenientes de apenas um terminal. Consideram-se faltas monofÃsicas envolvendo uma das fases e a terra, as quais ocorrem na primeira metade de uma linha de transmissÃo de parÃmetros desconhecidos. Observa-se que o mÃtodo (i) nÃo se mostrou sensÃvel a variaÃÃes de resistÃncia de falta e Ãngulo de incidÃncia e (ii) os resultados obtidos apresentam erros entre 0,10% e 5,82% para faltas que ocorreram entre 7km e 99km do terminal de monitoramento. Para a melhoria da precisÃo na estimaÃÃo da localizaÃÃo das faltas foi projetada uma Rede Neural Artificial (RNA) do tipo MLP (Multi-Layer Perceptron), treinada a partir de caracterÃsticas dos sinais faltosos extraÃdas atravÃs da TS. Foram utilizados os sinais trifÃsicos de tensÃo amostrados na frequÃncia de 200kHz gerados a partir de simulaÃÃes no software ATP (Alternative Transiente Program), no qual foram realizadas 1280 simulaÃÃes explorando diversas localizaÃÃes e resistÃncias de falta e Ãngulo de incidÃncia. O mÃtodo foi aplicado utilizando o software MATLABÂ. De acordo com os resultados obtidos, a combinaÃÃo da TS e RNA projetada apresentou melhores resultados do que a aplicaÃÃo da TS e TOV, destacando-se na estimaÃÃo da localizaÃÃo de faltas que ocorreram a maiores distÃncias do terminal de monitoramento, com erros entre 0,02% e 1,56% para faltas que ocorreram entre 7km e 99km do terminal de monitoramento.

Page generated in 0.0528 seconds