Spelling suggestions: "subject:"transformada"" "subject:"transformadas""
1 |
Análise de eventos em redes de distribuição por meio das transformadas Wavelet e S / Event analysis in distribution networks using Wavelet and S transformGómez Peña, Guido 02 April 2012 (has links)
O presente trabalho apresenta uma comparação de duas técnicas para a análise tempo - frequência em análise de qualidade de energia elétrica para sinais de tensão que contenham distúrbios individuais ou simultâneos. Dessa forma, o objetivo, desta dissertação, é encontrar uma ferramenta que forneça as características e parâmetros para a localização, identificação e classificação de tais distúrbios. O estudo consiste na análise do desempenho da Transformada Wavelet Discreta e da Transformada-S, principalmente, quando os sinais são analisados na presença de múltiplos distúrbios. Ambas as transformadas fornecem informação importante nos domínios do tempo e da frequência. No entanto, essas ferramentas não tem sido amplamente exploradas para análise de múltiplos distúrbios. Neste contexto, ambas as transformadas são testadas para conhecer seus desempenhos e suas capacidades de identificação e localização de eventos de qualidade de energia elétrica. Para finalizar, é projetado um sistema classificador baseado em arvore de decisão capaz de reconhecer quinze tipos de distúrbios diferentes. / This work presents a comparison of two methods for time-frequency analysis applied in Power Quality signals containing single or multiple disturbances. In this way, the aim of this work is to apply tools that supply the parameters and characteristics to identify, locate and classify Power Quality disturbances. For that, the proposed method analyzes the performance of the Wavelet and S transforms, mainly when the signals are with more than one disturbance type. Both mathematical tools supply important information on the time and frequency domain. However, these tools have not been thoroughly used to analyze multiple events locate Power Quality events. In this contest, both transforms are tested in order to assess their performance to identify and locate electrical power quality events. According to a decision tree classifier, fifteen types of single and combined power disturbances are well recognized.
|
2 |
Análise de eventos em redes de distribuição por meio das transformadas Wavelet e S / Event analysis in distribution networks using Wavelet and S transformGuido Gómez Peña 02 April 2012 (has links)
O presente trabalho apresenta uma comparação de duas técnicas para a análise tempo - frequência em análise de qualidade de energia elétrica para sinais de tensão que contenham distúrbios individuais ou simultâneos. Dessa forma, o objetivo, desta dissertação, é encontrar uma ferramenta que forneça as características e parâmetros para a localização, identificação e classificação de tais distúrbios. O estudo consiste na análise do desempenho da Transformada Wavelet Discreta e da Transformada-S, principalmente, quando os sinais são analisados na presença de múltiplos distúrbios. Ambas as transformadas fornecem informação importante nos domínios do tempo e da frequência. No entanto, essas ferramentas não tem sido amplamente exploradas para análise de múltiplos distúrbios. Neste contexto, ambas as transformadas são testadas para conhecer seus desempenhos e suas capacidades de identificação e localização de eventos de qualidade de energia elétrica. Para finalizar, é projetado um sistema classificador baseado em arvore de decisão capaz de reconhecer quinze tipos de distúrbios diferentes. / This work presents a comparison of two methods for time-frequency analysis applied in Power Quality signals containing single or multiple disturbances. In this way, the aim of this work is to apply tools that supply the parameters and characteristics to identify, locate and classify Power Quality disturbances. For that, the proposed method analyzes the performance of the Wavelet and S transforms, mainly when the signals are with more than one disturbance type. Both mathematical tools supply important information on the time and frequency domain. However, these tools have not been thoroughly used to analyze multiple events locate Power Quality events. In this contest, both transforms are tested in order to assess their performance to identify and locate electrical power quality events. According to a decision tree classifier, fifteen types of single and combined power disturbances are well recognized.
|
3 |
Detecção de ilhamento de Geradores Distribuídos utilizando Transformada S e Redes Neurais Artificiais com Máquina de Aprendizado Extremo / Islanding detection for Distributed Generators using S-transform and Artificial Neural Networks with Extreme Learning MachineMenezes, Thiago Souza 24 May 2019 (has links)
A conexão de Geradores Distribuídos (GDs) no sistema de distribuição vem se intensificando nos últimos anos. Neste cenário, o aumento de GDs pode trazer alguns benefícios, como a redundância da geração e redução das perdas elétricas. Por outro lado, o problema do ilhamento também vem se destacando. Atualmente, existem técnicas já consolidadas para a detecção do ilhamento, sendo que as técnicas passivas estão entre as mais utilizadas. Entretanto, as técnicas passivas são bastante dependentes do desbalanço de potência entre a geração e as cargas no momento de ocorrência do ilhamento para atuarem corretamente. Caso o desbalanço de potência seja pequeno, as técnicas passivas tendem a não identificar o ilhamento, gerando as chamadas Zonas de Não Detecção (ZNDs). Para mitigar este problema, a pesquisa por técnicas passivas inteligentes baseadas em aprendizagem de máquina vem se tornando cada vez mais comum. Neste trabalho foi modelada uma proteção anti-ilhamento baseada em Redes Neurais Artificiais (RNAs). A classificação do ilhamento é feita com base no espectro de frequência das tensões nos terminais do GD com o uso da Transformada de Stockwell, ou apenas Transformada S (TS). Outro ponto importante da metodologia foi a implementação de uma etapa de detecção de eventos, também baseada nas energias do espectro de frequência das tensões, para evitar a constante execução do classificador. Assim, a RNA apenas irá classificar o evento após receber um sinal de trigger da etapa de detecção de evento. Para o treinamento da RNA foram testados dois algoritmos diferentes, o clássico Backpropagation (BP) e a Máquina de Aprendizado Extremo, do inglês Extreme Learning Machine (ELM). Ressalta-se o melhor desempenho obtido com as redes treinadas pelo ELM, que apresentaram uma capacidade de generalização muito maior, logo, resultando em taxas de acerto mais elevadas. De modo geral, depois de comparada com métodos passivos convencionais para a detecção de ilhamento, a proteção proposta se mostrou mais precisa e com um tempo de detecção muito menor, sendo inferior a 2 ciclos. Por fim, ainda foi realizada a análise das ZNDs para a proteção proposta e as técnicas convencionais, por ser uma característica muito importante para a proteção antiilhamento, mas que não é comumente abordada para técnicas passivas inteligentes. Nesta análise, o método para a detecção de ilhamento proposto novamente se sobressaiu às técnicas convencionais, apresentado uma ZND muito menor. / The connection of distributed generators (DG) in the distribution system has been intensified in the recent years. In this scenario, the increase of DG can bring some benefits, such as generation redundancy and reduction of power losses. On the other hand, the problem of islanding is also been highlighted. Currently, there are already consolidated techniques for islanding detection, and passive techniques are among the most used ones. However, the passive techniques are very dependent of the power unbalance between the generation and the loads at the moment of the islanding in order to actuate properly. If the power mismatch is small, the passive techniques tend to not identify the islanding, generating the so called Non-Detection Zones (NDZ). To mitigate this issue, the research of intelligent passive techniques based in machine learning is becoming more common. In this study, an anti-islanding protection based on Artificial Neural Networks (ANN) was modelled. The islanding classification is done based on the frequency spectrum of the DG\'s terminal voltages using the Stockwell Transform, or just S-Transform (ST). Another important point of the methodology was the implementation of an event detection stage, also based on the energies of the voltages frequency spectrum, to avoid the constant execution of the classifier. Therefore, the ANN will only classify the event after receiving a trigger signal from the event detection stage. To train the ANN, two different algorithms were tested: the classic Backpropagation and the Extreme Learning Machine (ELM). It is noteworthy the better performance obtained with the neural networks trained by the ELM, which had a greater capacity of generalization, hence resulting in higher success rates. In general, after being compared with conventional passive techniques for islanding detection, the proposed protection was more accurate and with a much smaller detection time, being less than 2 cycles. Finally, the analysis of the NDZ for the proposed protection and the conventional techniques was carried out, as it is a very important feature for anti-islanding protection, but is not commonly addressed for intelligent passive techniques. In this analysis, the islanding detection method proposed again overcame the conventional techniques, presenting a much smaller NDZ.
|
Page generated in 0.0536 seconds