Spelling suggestions: "subject:"bransformation dess savoir"" "subject:"bransformation deus savoir""
1 |
Étude des pratiques enseignantes pour la transformation de savoirs scientifiques et leur enseignement en vue d’un changement des conceptions des étudiantsMarquis, Christine 04 1900 (has links)
L’enseignement des sciences dans le contexte de l’approche par compétences comporte des défis pédagogiques et didactiques. Les enseignants ont, entre autres, à faire des choix relativement à l’étendue des contenus enseignés et à favoriser des méthodes d’enseignement qui favoriseront le développement des compétences ciblées dans les cours de sciences. Par ailleurs, la chimie est une discipline complexe que certains étudiants ont de la difficulté à appréhender. Cela s’explique par le fait que les savoirs qu’elle sous-tend sont abstraits, souvent invisibles à l’œil nu et qu’ils s’incarnent dans plusieurs niveaux de représentation (microscopique, macroscopique et symbolique). Ces particularités justifient la nécessité que les enseignants transforment les savoirs de cette discipline en des formes plus faciles à apprendre par les étudiants.
Notre étude s’est penchée sur l’enseignement d’un thème précis soit l’enseignement du modèle probabiliste de l’atome, modèle qui stipule que les électrons sont retrouvés dans des orbitales décrivant des régions de l’atome où la probabilité de trouver un électron est élevée, puisqu’il est reconnu dans la littérature qu’il présente des obstacles à l’apprentissage particuliers. Certaines études ont montré que les difficultés sont notamment dues au fait que les apprentissages réalisés au secondaire sur les modèles atomiques précédents semblent persister et nuire aux nouveaux apprentissages ou qu’elles sont liées à la nature abstraite des concepts relatifs à la mécanique ondulatoire.
Notre recherche vise à mieux comprendre les pratiques enseignantes de transformation des savoirs liés au modèle probabiliste de l’atome durant la planification ainsi que les pratiques d’enseignement en lien avec les savoirs appris par les étudiants dans le cadre du cours « Chimie générale : la matière » du programme Sciences de la nature.
Le processus de transformation du modèle de raisonnement et d’action pédagogique de Shulman (1987) issu des travaux portant sur le pedagogical content knowledge a été utilisé pour l’étude des pratiques enseignantes de transformation des savoirs. Pour l’étude des pratiques effectives lors de la phase interactive de l’enseignement, les concepts de réflexion dans l’action et de réflexion sur l’action issus des travaux de Schön (1994) et un modèle intégré de pensée interactive des enseignants (Wanlin et Crahay, 2012) sont mobilisés. Les savoirs appris par les étudiants ont été abordés en lien avec le concept de conceptions (aussi nommé représentations) décrivant ces idées, ces connaissances que les étudiants ont déjà au moment d’apprendre. Nous avons fait le choix d’interpréter ces conceptions et le changement de celles-ci avec la notion de niveaux de formulation.
Une étude multicas a été réalisée auprès de six enseignants de chimie expérimentés en ayant recours à des entrevues semi-dirigées et des entrevues de rappel stimulé, ce qui a permis de comparer les pratiques déclarées et effectives. Des schémas contenant des explications écrites ont été réalisés par leurs 163 étudiants avant et après l’enseignement de la séquence et nous ont permis de mettre en évidence les changements dans leur façon de concevoir la structure de l’atome. Enfin, des entrevues ont été réalisées avec 10 étudiants afin de mettre en évidence certaines pratiques ayant contribué au changement de leurs conceptions. Une analyse qualitative a été réalisée sur les données recueillies.
Les résultats montrent une diversité dans les pratiques enseignantes de transformation des savoirs, bien que plusieurs de celles-ci soient partagées par plusieurs enseignants. Pour la préparation de la leçon et le choix des contenus essentiels, les enseignants consultent essentiellement les mêmes sources (manuel, documents du programme, collègues) alors que critères sur lesquels ils se basent pour le choix des contenus essentiels diffèrent. Différentes formes de représentation des contenus sont utilisées dans le but, principalement, de susciter l’intérêt des étudiants ou d’expliquer ou d’illustrer certains concepts. Même si l’exposé magistral demeure largement utilisé, les enseignants planifient des activités d’apprentissage où les étudiants sont plus actifs dans le but de faire pratiquer les étudiants, de leur permettre de faire eux-mêmes certains liens, de leur faire découvrir certains concepts par eux-mêmes en s’entraidant et afin de vérifier leur compréhension. Enfin, les enseignants adaptent davantage leur planification aux caractéristiques cognitives de leurs étudiants, aux connaissances antérieures qu’ils possèdent sur les modèles atomiques dans le cas qui nous concerne et les stratégies prévues diffèrent selon les enseignants.
Les pratiques effectives observées en classe correspondent généralement à ce qui a été planifié pour la majorité des enseignants. Toutefois, ceux-ci sont appelés à prendre des décisions dans l’action qui les conduisent, dans certains cas, à apporter des modifications à leur plan sur le vif. Ces décisions émergent d’une réflexion dans l’action initiée par des indices perçus principalement chez les étudiants. Nous avons aussi observé certaines réflexions sur l’action alors que les enseignants ont émis, a posteriori, des commentaires critiques sur leur enseignement. Ces diverses réflexions amènent les enseignants à apporter des modifications à leur plan au fil des années, celui-ci devenant toujours mieux adapté aux contraintes de la situation. Cela peut expliquer que nous ayons observé peu de différences entre les pratiques planifiées déclarées et celles effectivement observées.
Enfin, la recherche nous a permis de mettre en évidence certaines pratiques enseignantes visant à changer les conceptions des étudiants. La grande majorité des étudiants conçoivent la structure de l’atome à la manière du modèle « Rutherford-Bohr », le dernier modèle enseigné au secondaire, en arrivant à leur premier cours de chimie au cégep . Des recherches ont montré que cette conception est difficile à changer pour différentes raisons. Nos résultats montrent que les enseignants sont conscients de ce fait et que certaines pratiques semblent avoir contribué au changement observé dans la façon de concevoir l’atome. On pense par exemple, à l’utilisation de formes de représentation des contenus visuelles ainsi que la mise en œuvre de certaines activités d’apprentissage en classe. Nous avons observé qu’à la fin de la session, la majorité des étudiants avaient vu leurs conceptions évoluer de manière importante en se représentant l’atome selon les concepts entourant le modèle probabiliste même si leurs représentations pouvaient contenir plusieurs erreurs. / Science education in the context of the competency-based approach presents
pedagogical and didactic challenges. Among other things, teachers have to choose relevant
content and teaching methods that will promote the development of targeted skills in science
courses. Chemistry is also a complex discipline that some students have difficulty
understanding. This is explained by the fact that the knowledge underlying it is abstract, often
invisible to the naked eye and embodied in several levels of representation (microscopic,
macroscopic and symbolic). These particularities justify the need for teachers to transform the
knowledge of this discipline into forms that are easier for students to learn.
Our research has focused on the teaching of a specific theme, namely the teaching of
the probabilistic model of the atom, which stipulates that electrons are found in orbitals
describing regions of the atom where the probability of finding an electron is high, since it is
recognized in the literature that it presents particular obstacles to learning. Some studies have
shown that the difficulties are in particular due to the fact that the learning carried out in
secondary school on previous atomic models seems to persist and interfere with new learning
or that it is linked to the abstract nature of concepts relating to quantum mechanics.
Our research aims to better understand the teaching practices of knowledge
transformation related to the probabilistic model of the atom during the planning phase as well
as teaching practices related to the knowledge learned by students in the "General chemistry"
course that is part of the Natural Sciences Program.
The transformation process that is part of Shulman's model of reasoning and
pedagogical action (1987), that emerged from his work on pedagogical content knowledge, was
used to study knowledge transformation teaching practices. For the study of effective practices
in the interactive phase of teaching, the concepts of reflection in action and reflection on action
from Schön’s work (1994) and an integrated model of interactive teacher thinking (Wanlin and
Crahay, 2012) are mobilized. The knowledge learned by the students was addressed in relation
to the concept of conceptions (also called representations) describing these ideas, this knowledge that the students already have at the time of learning. We have chosen to interpret
these conceptions and the change of these with the notion of levels of formulation.
A multicase study was conducted with six chemistry teachers using semi-structured
and stimulated recall interviews, which compared reported and actual practices. Explained
diagrams made by their 163 students before and after the teaching of the sequence made it
possible to highlight the changes in their way of conceiving the structure of the atom. Finally,
interviews were conducted with 10 students to highlight some of the practices that have
contributed to the change in their conceptions. A qualitative analysis was performed on the data
collected.
The results show a diversity in knowledge transformation teaching practices, although
many of these are shared by several teachers. For the preparation of the lesson and the choice of
the essential contents, teachers consult essentially the same sources (course manual, curriculum
documents, colleagues) while the criteria on which they base their choice of essential content
differ. Different forms of content representation are used primarily for the purpose of arousing
student interest or explaining or illustrating certain concepts. Although the lecture remains
widely used, teachers plan more active learning activities in order for students to practice, to
allow them to make connections themselves, to introduce them to concepts by helping each
other and to verify their understanding. Finally, teachers adapt their planning closely to the
cognitive characteristics of their students, to their previous knowledge of atomic models, and
the planned strategies differ from one teacher to another.
Actual practices observed in the classroom generally correspond to what was planned
for the majority of teachers. However, they come to take decisions in the action that lead them,
in some cases, to make changes to their plan on the fly. These decisions emerge mainly from a
reflection in action initiated by indices they perceive from students. We also observed some
reflections on action as teachers made critical comments about their teaching after the event.
These various reflections lead teachers to make changes to their plans over the years, the latter
becoming better adapted to the constraints of the situation. This may explain why we observed
few differences between reported planned practices and those actually observed. Finally, the research allowed us to highlight some teaching practices aimed at changing
students' conceptions. The majority of students conceive the structure of the atom in the manner
of the model "Rutherford-Bohr", the latest model taught in high school, when they arrive at their
first CEGEP chemistry course. Research has shown that this conception is difficult to change
for various reasons. Our results show that teachers are aware of this fact and that some practices
seem to have contributed to actual changes in the way students conceive the atom. Examples
include the use of forms of visual content representation and the implementation of certain
classroom learning activities. We observed that at the end of the session, the majority of students
had seen their conceptions evolve significantly by representing the atom according to the
concepts related to the probabilistic model even if their representations could contain some
errors.
|
Page generated in 0.1311 seconds