• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating Biotic and Abiotic Transformation Processes of Selected Pesticides Using Electrochemistry Coupled to Mass Spectrometry

Mekonnen, Tessema Fenta 15 May 2019 (has links)
In der Entwicklung neuer Agrochemikalien ist es essentiell das weitere Schicksal im Bezug zum Abbau durch abiotische und biotische Einflüsse vorherzusagen. Pestizide gehören zu den Agrochemikalien und durch abiotischen und biotischen Stress werden Transformationsprodukte (TPs) gebildet. Daher ist es von Bedeutung, die TPs von Pestiziden und deren Entstehungsprozess zu untersuchen. Diese Dissertation beschäftigt sich mit biotischen und abiotischen Umwandlungsprozessen von zwei Modell-Pestiziden, nämlich Chlorpyrifos (ein Insektizid) und Fluopyram (ein Fungizid) unter Verwendung von Modellsystemen. Lebermikrosomeninkubation und elektrochemische Durchflusszellen, die an Online-Massenspektrometrie gekoppelt waren, wurden als experimenteller Modellansatz zu untersuchen um die Biotransformationsprozesse (phase I und phase II) der Ziel-Pestizide. Im zweiten Teil dieser Arbeit, wurden Photodegradationsprodukte der beiden Modellverbindungen durch Bestrahlung mit keimtötendem ultraviolettem Licht (200 - 280 nm) untersucht. Im letzten Teil dieser Arbeit wurde die Elektrochemie-Massenspektrometrie auf die Herstellung von Referenzstandards für Transformationsprodukte für das gezielte Screening in Lebensmittelproben ausgedehnt. Die strukturelle Aufklärung der Transformationsprodukte erfolgte mittels HPLC, gekoppelt an verschiedene Massenspektrometrietechniken (Single Quad, Triple Quad, FT-ICR HRMS, Triple TOF-MS, Orbitrap HRMS). Zusammenfassend konnte die Kopplung von EC/(LC)/MS als schnelle, zuverlässige, kostengünstige und matrix-unabhängige Methode genutzt werden, um den oxidativen Phase-I und II Metabolismus von Fluopyram und Chlorpyrifos zu simulieren. EC/MS könnte weiterhin zur Synthese von TP Referenzstandards und zur Messung von Realproben genutzt werden. Neue TPs und deren Bildungsmechanismen konnten im Rahmen dieser Dissertation für beide untersuchten Substanzen identifiziert werden. / One of the crucial steps of developing a new agrochemical product is predicting its fate following biotic or abiotic stress. In this regard, pesticides undergo transformation processes in response to biotic and abiotic stress. Therefore, it is important to investigate pesticides’ transformation products (TPs) and the formation processes they undergo. This dissertation deals on biotic and abiotic transformation processes of two model pesticides namely chlorpyrifos (an insecticide) and fluopyram (a fungicide) using model systems. Liver microsome incubation and electrochemical-flow-through cell coupled to online mass spectrometry were used as a model experimental approach to investigate phase I and phase II biotransformation processes of the targeted pesticides. In the second part of this thesis, photodegradation products of the two model compounds were investigated by irradiating with germicidal ultraviolet light (200 – 280 nm). In the last part of this work, electrochemistry-mass spectrometry was scaled-up to the production of transformation product reference standards for targeted screening in different food samples. Structural elucidations of transformation products were performed using HPLC coupled to different mass spectrometry techniques (single quad, triple quad, FT-ICR HRMS, TripleTOF-MS, Orbitrap HRMS). In summary, a fast, reliable, cost-effective and matrix-free simulation of oxidative metabolism (phase I and II) of fluopyram and chlorpyrifos was achieved here by EC/(LC)/MS. EC/MS could, therefore, be scaled up to synthesis TP reference standards for real sample investigation. Additionally, new TPs and their mechanisms were identified for both investigated compounds.
2

The attenuation and transformation of organic micropollutants in rivers and their hyporheic zone under varying environmental conditions

Jäger, Anna 21 March 2024 (has links)
Die Verschmutzung von Süßgewässern mit organischen Mikroschadstoffen ist ein Problem, das sich weltweit zunehmend verschärft. Die vorliegende Doktorarbeit soll zu einem besseren Verständnis des Verhaltens einzelner Mikroschadstoffe und deren Transformationsprodukten in Flüssen beitragen, sowie die Rolle relevanter Einflussfaktoren untersuchen. Verhalten verschiedener Stoffe wurde im Oberflächenwasser eines urbanen Flusses analysiert. Es zeigte sich, dass die Sonneneinstrahlung für einige Verbindungen der wichtigste Einflussfaktor ist, während andere eher biologisch abgebaut wurden. Die Mahd von Makrophyten hatte ebenfalls stoffspezifische Folgen auf den Abbau. Um langfristige Variabilität von Stofftransport besser zu verstehen wurde eine neue Methode zur Schätzung des Stofftransports anhand von Schwankungen der elektrischen Leitfähigkeit getestet. Einige Stofftransportparameter änderten sich über die Jahreszeiten hinweg und transiente Speicherung unterschied sich zwischen den Flussabschnitten. Um im Besonderen den Einfluss von mikrobieller Diversität und von hyporheischem Austausch zu bewerten, wurde ein Meskosmenexperiment mit 20 rezirkulierenden Fließrinnen entwickelt. Es konnte festgestellt werden, dass vor allem mikrobielle Diversität einen starken Einfluss hat. Der neue Versuchsaufbau kann zukünftig für die Untersuchung weiterer Variablen Verwendung finden. Schließlich wurden Mikroschadstoffe und Transformationsprodukte in der hyporheischen Zone der Fließrinnen analysiert. Das Verhalten war sowohl stoffspezifisch als auch fließwegspezifisch. Die Ergebnisse unterstreichen die Bedeutung des oberflächennahen, hyporheischen Austauschs auf den Stoffabbau. Im Allgemeinen konnte die hohe Variabilität des Abbaus von Mikroschadstoffen mit besonderer Relevanz der hyporheischen Zone und der mikrobiellen Diversität nachgewiesen werden. Diese Faktoren sollten in zukünftigen Forschungsvorhaben besonders berücksichtigt werden. / Contamination of freshwaters with organic micropollutants is a worldwide emerging problem. The present thesis aims to contribute to a better understanding of the variability of the behaviour of individual micropollutants, the formation of transformation products in rivers and the specific role of relevant influencing factors. The behaviour of several substances was investigated in the surface water of an urban river by accounting for spatial and temporal dynamics. Solar radiation was identified to be the major driver for some compounds, while others were more susceptible to biodegradation. The response to macrophyte removal was also compound-specific. To better understand long-term variability of solute transport on a reach-scale a new method to estimate solute transport by use of electrical conductivity fluctuations was proposed and tested. Some solute transport metrics changed over the seasons and transient storage differed between river sections. To specifically assess the influence of microbial diversity and hyporheic exchange, a mesocosm experiment with 20 recirculating flumes was developed. It was found that microbial diversity in particular had a strong impact and the novel setup was suggested to be a useful method to test other variables in the future. Finally, the behaviour of micropollutants and transformation products in the hyporheic zone of the flumes was investigated on a centimeter-scale. The behaviour was found to be compound-specific as well as flowpath-specific. But several compounds were degraded most on the shortest, most oxic flowpath. The findings highlight the importance of shallow, small-scale hyporheic exchange for turnover of micropollutants. Generally, the high variability of micropollutant degradation depending on relevant influencing factors, specifically hyporheic exchange and microbial diversity, has been demonstrated. These factors are of great importance and need to be addressed and considered in future research.
3

Entfernung von β-Lactam- und Makrolid-Antibiotika aus Wässern mit Hilfe von gentechnisch modifizierten Saccharomyces cerevisiae-Zellen

Schuster, Linda 07 December 2020 (has links)
Antibiotika sind für die Behandlung von bakteriellen Infektionskrankheiten in der Human- und Veterinärmedizin von immenser Bedeutung. Angesichts der Korrelation zwischen Antibiotika-Einsatzmengen und der Häufigkeit resistenter Organismen ist eine unsachgemäße bzw. übermäßige Verwendung dieser antibakteriellen Wirkstoffe sowie deren Eintrag über die Kläranlagen in die Umwelt äußerst problematisch. Neben Vermeidungs- und Verminderungsstrategien besteht ein Ansatz zur Problemlösung in der Entwicklung innovativer Technologien zur Entfernung von Antibiotikarückständen aus Wässern, da konventionelle Kläranlagen dieser Anforderung nicht vollständig genügen. Das im Rahmen dieser Arbeit entwickelte und charakterisierte biologische Verfahren basiert auf genetisch modifizierten Saccharomyces cerevisiae-Zellen, welche spezielle Enzyme sezernieren, die zur Umsetzung von Antibiotika herangezogen werden können. Als Modellsystem diente die enzymatische Hydrolyse des β-Lactam-Antibiotikums Ampicillin mit der β-Lactamase TEM-1. Unter Verwendung von enzymhaltigen Hefe-Kulturüberständen gelang es, die grundsätzliche Eignung des Systems zur Entfernung dieses Antibiotikums nachzuweisen. Untersuchungen mit weiteren β-Lactam-Antibiotika zeigten in Übereinstimmung mit der Literatur, dass TEM-1 Penicilline und Cephalosporine der 1. Generation hydrolysieren kann. Am Beispiel der TEM-8 wurde die Übertragbarkeit des Expressionssystems auf andere Lactamase-Varianten erfolgreich demonstriert. Das erweiterte Wirkspektrum dieses Enzyms, welches neben Penicillinen auch Monobactame und Cephalosporine bis zur 4. Generation umfasst, konnte bestätigt werden. Eine mittels Histidin-tag gereinigte TEM-1-His wurde eingesetzt, um systematisch den Einfluss verschiedener Faktoren, wie Temperatur, Substratkonzentration oder pH-Wert, unbeeinflusst von der Matrix der Hefe-Kulturüberstände untersuchen zu können. In diesem Zusammenhang wurde auch die Übertragbarkeit der Ergebnisse von Modell- auf Realwässer, wie Kläranlagenzu- und -ablauf, untersucht, mit dem Ergebnis, dass zumindest die TEM-1 temporär in allen getesteten Matrices aktiv ist. Mit dem Ziel, auch weitere Antibiotikaklassen transformieren zu können, wurden Esterase Ere-A-produzierende Zellen zur Umsetzung von Makrolid-Antibiotika, wie Erythromycin, herangezogen. Die Analyse der gebildeten Transformationsprodukte ergab, dass die antibakterielle Wirkung jeweils durch hydrolytische Spaltung des β-Lactam- bzw. des Makrolid-Ringes irreversibel verloren geht. Somit kann dieses biologische Verfahren prinzipiell zur gezielten Inaktivierung von Antibiotika eingesetzt werden, wobei der größte Vorteil in der erheblichen Beschleunigung der natürlicherweise ablaufenden Umsetzungsprozesse besteht. Diese Methode kann als ergänzende Technologie bei der Aufbereitung von Konzentraten und Wässern aus Spezialanwendungen angewendet werden.:Glossar Abkürzungsverzeichnis Symbolverzeichnis Kurzfassung Abstract 1 Einleitung 1.1 Motivation 1.2 Zielstellung 2 Theoretische Grundlagen 2.1 Antibiotika und Antibiotikaresistenzen 2.1.1 Antibiotika: Definition, Bedeutung, Einsatzmengen, Klassifikation 2.1.2 Wirkmechanismen: Antibiotika versus Antibiotikaresistenzen 2.1.3 Antibiotika und antibiotikaresistente Organismen in der Umwelt 2.1.4 β-Lactam-Antibiotika 2.1.5 Resistenzen gegenüber β-Lactam-Antibiotika 2.1.6 Makrolid-Antibiotika 2.1.7 Resistenzen gegenüber Makrolid-Antibiotika 2.2 Gentechnische Methoden zur gezielten Proteinbiosynthese 2.3 Der eukaryotische Modellorganismus Saccharomyces cerevisiae 2.4 Enzymkinetik 2.5 Spurenstoffanalytik mittels LC-MS/MS-Technik 2.5.1 Einleitung, Entwicklung und Bedeutung 2.5.2 Elektrospray-Ionisation 2.5.3 Der Quadrupol als Massenanalysator 2.5.4 Analysenmodi bei der Tandem-Massenspektrometrie 3 Material und Methoden 3.1 Verwendete Geräte und Chemikalien 3.2 Arbeiten mit gentechnisch veränderte S. cerevisiae-Zellen 3.2.1 Eingesetzte S. cerevisiae-Stämme 3.2.2 Nährmedien und Kultivierung 3.3 Gewinnung von rekombinanten, in S. cerevisiae exprimierten Enzymen 3.3.1 Gewinnung von β-Lactamase-haltigen Kulturüberständen und gereinigter MFα-TEM-1-His 3.3.2 Zellaufschluss zur Gewinnung der intrazellulären Enzyme 3.4 Einsatz der rekombinanten Enzyme zur Umsetzung von β-Lactam- und Makrolid-Antibiotika 3.4.1 Herstellung und Lagerung von Antibiotika-Stammlösungen, internen Standards und Pufferlösungen 3.4.1.1 Antibiotika-Stammlösungen 3.4.1.2 Interne Standards 3.4.1.3 Herstellung von Kaliumphosphatpuffer 3.4.2 Einsatz von enzymhaltigen Kulturüberstand 3.4.2.1 Nitrocefin-Assay 3.4.2.2 Allgemeine Vorgehensweise und Standardversuchsbedingungen 3.4.2.3 Variation der Antibiotika Konzentration 3.4.2.4 Untersuchungen mit TEM-8-haltigen Kulturüberständen 3.4.3 Einsatz von gereinigter TEM-1 β-Lactamase 3.4.3.1 Proteinbestimmung 3.4.3.2 Allgemeine Vorgehensweise und Standardversuchsbedingungen 3.4.3.3 Variation der Enzymkonzentration 3.4.3.4 Einfluss der Art des Puffers 3.4.3.5 Pufferkonzentration und Leitfähigkeit 3.4.3.6 Variation des pH Wertes 3.4.3.7 Einfluss der Temperatur 3.4.3.8 Variation des eingesetzten β-Lactam-Antibiotikums (Substrat) 3.4.3.9 Variation der AMP-Konzentration 3.4.3.10 Bestimmung der Michaelis-Menten-Konstante Km bei der AMP-Umsetzung mittels TEM-1-His 3.4.3.11 Aktivität und Stabilität der TEM-1-His in Realwässern 3.4.3.12 Bestimmung der spezifischen Enzymaktivität 3.4.4 Einsatz von zellfreien Rohextrakten 3.4.4.1 Allgemeine Versuchsbedingungen 3.4.4.2 Untersuchungen zur Esterase Ere-A 3.5 LC-MS/MS-Analytik 3.5.1 Probenvorbereitung und Herstellung von Kalibrierstandards 3.5.2 HPLC-Parameter 3.5.2.1 Zusammensetzung der Eluenten 3.5.2.2 HPLC-Methoden 3.5.3 Massenspektrometrische Parameter 3.5.4 Auswertung mittels Analyst 3.5.5 Leistungsgrenzen für die qualitative und quantitative AMP Bestimmung 3.5.6 Charakterisierung von Transformationsprodukten 4 Ergebnisse und Diskussion 4.1 Einsatz von TEM-1-haltigem Kulturüberstand zur Transformation von β-Lactam-Antibiotika 4.1.1 Entwicklung einer Versuchsvorschrift zum Nachweis der Enzymaktivität gegenüber β-Lactam-Antibiotika im Kulturüberstand 4.1.1.1 Nachweis der enzymatischen Aktivität mittels Nitrocefin-Assay 4.1.1.2 Versuche mit β-Lactam-Antibiotika 4.1.1.3 Probenvorbereitung 4.1.2 Optimierung einer HPLC-MS/MS-Methode zur Quantifizierung von β-Lactam-Antibiotika unter Berücksichtigung der Probenmatrix 4.1.3 Nachweis der Antibiotika Umsetzung mit TEM-1-haltigen Kulturüberständen 4.1.4 Wirksamkeit der TEM-1-haltigen Kulturüberstände in Abhängigkeit von ausgewählten Randbedingungen 4.1.4.1 Einfluss der Enzymkonzentration 4.1.4.2 Einfluss der Leadersequenz 4.1.4.3 Einfluss des pH-Wertes 4.1.4.4 Einflüsse auf die Enzymkonzentration im Kulturüberstand 4.1.4.5 Enzymatische Stabilität bei Lagerung 4.1.4.6 Variation der Substratkonzentration 4.1.4.7 Substratspezifität 4.1.5 Zwischenfazit 4.2 Einsatz von TEM-8-haltigem-Kulturüberstand zur Transformation von β-Lactam-Antibiotika 4.2.1 Nachweis der enzymatischen Aktivität von TEM-8 4.2.1.1 Auswahl der Modellsubstanzen AMP und CEF 4.2.1.2 Versuche zum Nachweis der TEM-8-Aktivität in nicht-gepuffertem Kulturüberstand 4.2.1.3 Nachweis der TEM-8-Aktivität unter Verwendung von MES-gepuffertem Kulturmedium 4.2.2 Wirksamkeit der TEM-8-haltigen Kulturüberständen in Abhängigkeit von ausgewählten Randbedingungen 4.2.2.1 Einfluss der Leadersequenz 4.2.2.2 Einfluss des Polyhistidin-tags 4.2.2.3 Substratspezifität 4.2.3 Vergleich TEM-1 und TEM-8 4.2.3.1 Prinzipielle Unterschiede in der Kultivierung zur Gewinnung von TEM-8 4.2.3.2 Versuche zur AMP-Umsetzung 4.2.3.3 Abnahme der AMP-Konzentration in den Kontrollproben 4.2.3.4 Versuche zur CEF-Umsetzung 4.2.4 Zwischenfazit 4.3 Einsatz von isolierter TEM-1-His zur Transformation von β-Lactam-Antibiotika 4.3.1 Nachweis der Enzymaktivität 4.3.2 Wirksamkeit des Enzyms TEM-1-His in Abhängigkeit von ausgewählten Randbedingungen 4.3.2.1 Variation der Enzymkonzentration 4.3.2.2 Variation der Pufferkonzentration und Pufferart 4.3.2.3 Variation des pH-Wertes 4.3.2.4 Variation der Temperatur 4.3.2.5 Variation des Substrates 4.3.2.6 Variation der Substratkonzentration 4.3.2.7 Kinetik der enzymatischen Reaktion mit TEM-1-His 4.3.2.8 Untersuchungen zur Umsetzung in Realwässern 4.3.2.9 Langzeitstabilität der isolierten TEM-1-His 4.3.3 Zwischenfazit: spezifische enzymatische Aktivität der TEM-1-His in Abhängigkeit von verschiedenen Versuchsparametern 4.4 Einsatz von Esterase Ere-A-haltigen Rohextrakten 4.4.1 Nachweis der Enzymaktivität im Rohextrakt 4.4.2 Wirksamkeit der Esterase Ere-A in Abhängigkeit von ausgewählten Randbedingungen 4.4.2.1 Einfluss verschiedener Puffer 4.4.2.2 Einfluss von C- und N-terminal angefügten Sequenzen 4.4.2.3 Substratspezifität 4.4.3 Zwischenfazit 4.5 Charakterisierung von Transformationsprodukten 4.5.1 Vorbemerkungen 4.5.2 Transformationsprodukte bei der Umsetzung von β-Lactam-Antibiotika 4.5.3 Einsatz der Esterase Ere A zur Transformation von Makrolid-Antibiotika 4.5.3.1 Transformationsprodukte von Erythromycin 4.5.3.2 Transformationsprodukte von Clarithromycin 4.5.3.3 Transformationsprodukte von Roxithromycin 4.5.4 Zwischenfazit 5 Zusammenfassung 6 Ausblick Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Anhang A-1 Weitere Analysenmodi bei der Tandem-Massenspektrometrie A-2 Verwendete Geräte und Chemikalien A-3 HPLC-Methoden A-4 Massenspektrometrische Parameter A-5 Erster Versuch zum Nachweis der enzymatischen Aktivität von TEM-1-haltigen Kulturüberstand A-6 Nachweis der Inhibitorwirkung von Sulbactam in Kombination mit TEM-1-His A-7 TEM-1: Variation der Substratkonzentration A-8 TEM-8: Substratspezifität A-9 Vergleich der AMP-Umsetzung mit TEM-1- und TEM-8-haltigen Kulturüberständen sowie den Rohextrakten A-10 TEM-1-His: Variation des pH-Wertes A-11 TEM-1-His: Substratspezifität A-12 Ere-A: Variation der Puffer A-13 Ere-A: Substratspezifität Selbstständigkeitserklärung / Antibiotics play an important role in human and veterinary medicine for the treatment of bacterial infectious diseases. However, regarding the known correlation between the quantities of antibiotics applied and the frequency of resistant organisms, the improper and excessive use of these antibacterial agents leads to serious problems. Their presence in the environment is largely caused by sewage systems due to their incomplete removal in conventional wastewater treatment plants. Therefore, besides avoidance and reduction strategies, one approach to address this issue is to develop innovative technologies for the removal of antibiotic residues from water. The biological method developed and characterized within this work is based on genetically modified Saccharomyces cerevisiae cells, which secrete special enzymes that can be used for the transformation of antibiotics. The enzymatic hydrolysis of the β-lactam-antibiotic ampicillin by the β-lactamase TEM-1 was employed as a model system. By using enzyme-containing yeast culture supernatants, it was possible to prove the suitability of the developed system for the removal of the mentioned antibiotic. The obtained results with other β-lactam-antibiotics showed in accordance with the literature, that TEM-1 was able to hydrolyse penicillins and the cephalosporins of the first-generation. Taking TEM-8 as an example, the transferability of this expression system to alternative lactamase was successfully demonstrated. The activity of this enzyme toward an extended substrate spectrum, which includes not only penicillins but also monobactams and cephalosporins up to the fourth-generation, could be confirmed. The histidine-tagged purified TEM-1-His was used to systematically investigate the influence of various factors, such as temperature, substrate concentration or pH value, independently from the matrix of the yeast culture supernatants. Furthermore, the transferability of the results from model to real water (e. g. influent and effluent from a sewage treatment plant) was investigated with the result that TEM-1 was at least temporarily active in all tested matrices. In order to be able to transform other classes of antibiotics, esterase Ere-A-producing cells were employed to transform macrolide antibiotics, such as erythromycin. The analysis of the formed transformation products revealed that the antibacterial activity is irreversibly lost by the hydrolytic cleavage of the β-lactam or macrolide ring. Therefore, the biological process can be generally used for the selective inactivation of antibiotics, affording a considerable acceleration of the naturally occurring transformation process as its greatest advantage. This method is considered to be a complementary technology for the treatment of concentrates and water from special applications.:Glossar Abkürzungsverzeichnis Symbolverzeichnis Kurzfassung Abstract 1 Einleitung 1.1 Motivation 1.2 Zielstellung 2 Theoretische Grundlagen 2.1 Antibiotika und Antibiotikaresistenzen 2.1.1 Antibiotika: Definition, Bedeutung, Einsatzmengen, Klassifikation 2.1.2 Wirkmechanismen: Antibiotika versus Antibiotikaresistenzen 2.1.3 Antibiotika und antibiotikaresistente Organismen in der Umwelt 2.1.4 β-Lactam-Antibiotika 2.1.5 Resistenzen gegenüber β-Lactam-Antibiotika 2.1.6 Makrolid-Antibiotika 2.1.7 Resistenzen gegenüber Makrolid-Antibiotika 2.2 Gentechnische Methoden zur gezielten Proteinbiosynthese 2.3 Der eukaryotische Modellorganismus Saccharomyces cerevisiae 2.4 Enzymkinetik 2.5 Spurenstoffanalytik mittels LC-MS/MS-Technik 2.5.1 Einleitung, Entwicklung und Bedeutung 2.5.2 Elektrospray-Ionisation 2.5.3 Der Quadrupol als Massenanalysator 2.5.4 Analysenmodi bei der Tandem-Massenspektrometrie 3 Material und Methoden 3.1 Verwendete Geräte und Chemikalien 3.2 Arbeiten mit gentechnisch veränderte S. cerevisiae-Zellen 3.2.1 Eingesetzte S. cerevisiae-Stämme 3.2.2 Nährmedien und Kultivierung 3.3 Gewinnung von rekombinanten, in S. cerevisiae exprimierten Enzymen 3.3.1 Gewinnung von β-Lactamase-haltigen Kulturüberständen und gereinigter MFα-TEM-1-His 3.3.2 Zellaufschluss zur Gewinnung der intrazellulären Enzyme 3.4 Einsatz der rekombinanten Enzyme zur Umsetzung von β-Lactam- und Makrolid-Antibiotika 3.4.1 Herstellung und Lagerung von Antibiotika-Stammlösungen, internen Standards und Pufferlösungen 3.4.1.1 Antibiotika-Stammlösungen 3.4.1.2 Interne Standards 3.4.1.3 Herstellung von Kaliumphosphatpuffer 3.4.2 Einsatz von enzymhaltigen Kulturüberstand 3.4.2.1 Nitrocefin-Assay 3.4.2.2 Allgemeine Vorgehensweise und Standardversuchsbedingungen 3.4.2.3 Variation der Antibiotika Konzentration 3.4.2.4 Untersuchungen mit TEM-8-haltigen Kulturüberständen 3.4.3 Einsatz von gereinigter TEM-1 β-Lactamase 3.4.3.1 Proteinbestimmung 3.4.3.2 Allgemeine Vorgehensweise und Standardversuchsbedingungen 3.4.3.3 Variation der Enzymkonzentration 3.4.3.4 Einfluss der Art des Puffers 3.4.3.5 Pufferkonzentration und Leitfähigkeit 3.4.3.6 Variation des pH Wertes 3.4.3.7 Einfluss der Temperatur 3.4.3.8 Variation des eingesetzten β-Lactam-Antibiotikums (Substrat) 3.4.3.9 Variation der AMP-Konzentration 3.4.3.10 Bestimmung der Michaelis-Menten-Konstante Km bei der AMP-Umsetzung mittels TEM-1-His 3.4.3.11 Aktivität und Stabilität der TEM-1-His in Realwässern 3.4.3.12 Bestimmung der spezifischen Enzymaktivität 3.4.4 Einsatz von zellfreien Rohextrakten 3.4.4.1 Allgemeine Versuchsbedingungen 3.4.4.2 Untersuchungen zur Esterase Ere-A 3.5 LC-MS/MS-Analytik 3.5.1 Probenvorbereitung und Herstellung von Kalibrierstandards 3.5.2 HPLC-Parameter 3.5.2.1 Zusammensetzung der Eluenten 3.5.2.2 HPLC-Methoden 3.5.3 Massenspektrometrische Parameter 3.5.4 Auswertung mittels Analyst 3.5.5 Leistungsgrenzen für die qualitative und quantitative AMP Bestimmung 3.5.6 Charakterisierung von Transformationsprodukten 4 Ergebnisse und Diskussion 4.1 Einsatz von TEM-1-haltigem Kulturüberstand zur Transformation von β-Lactam-Antibiotika 4.1.1 Entwicklung einer Versuchsvorschrift zum Nachweis der Enzymaktivität gegenüber β-Lactam-Antibiotika im Kulturüberstand 4.1.1.1 Nachweis der enzymatischen Aktivität mittels Nitrocefin-Assay 4.1.1.2 Versuche mit β-Lactam-Antibiotika 4.1.1.3 Probenvorbereitung 4.1.2 Optimierung einer HPLC-MS/MS-Methode zur Quantifizierung von β-Lactam-Antibiotika unter Berücksichtigung der Probenmatrix 4.1.3 Nachweis der Antibiotika Umsetzung mit TEM-1-haltigen Kulturüberständen 4.1.4 Wirksamkeit der TEM-1-haltigen Kulturüberstände in Abhängigkeit von ausgewählten Randbedingungen 4.1.4.1 Einfluss der Enzymkonzentration 4.1.4.2 Einfluss der Leadersequenz 4.1.4.3 Einfluss des pH-Wertes 4.1.4.4 Einflüsse auf die Enzymkonzentration im Kulturüberstand 4.1.4.5 Enzymatische Stabilität bei Lagerung 4.1.4.6 Variation der Substratkonzentration 4.1.4.7 Substratspezifität 4.1.5 Zwischenfazit 4.2 Einsatz von TEM-8-haltigem-Kulturüberstand zur Transformation von β-Lactam-Antibiotika 4.2.1 Nachweis der enzymatischen Aktivität von TEM-8 4.2.1.1 Auswahl der Modellsubstanzen AMP und CEF 4.2.1.2 Versuche zum Nachweis der TEM-8-Aktivität in nicht-gepuffertem Kulturüberstand 4.2.1.3 Nachweis der TEM-8-Aktivität unter Verwendung von MES-gepuffertem Kulturmedium 4.2.2 Wirksamkeit der TEM-8-haltigen Kulturüberständen in Abhängigkeit von ausgewählten Randbedingungen 4.2.2.1 Einfluss der Leadersequenz 4.2.2.2 Einfluss des Polyhistidin-tags 4.2.2.3 Substratspezifität 4.2.3 Vergleich TEM-1 und TEM-8 4.2.3.1 Prinzipielle Unterschiede in der Kultivierung zur Gewinnung von TEM-8 4.2.3.2 Versuche zur AMP-Umsetzung 4.2.3.3 Abnahme der AMP-Konzentration in den Kontrollproben 4.2.3.4 Versuche zur CEF-Umsetzung 4.2.4 Zwischenfazit 4.3 Einsatz von isolierter TEM-1-His zur Transformation von β-Lactam-Antibiotika 4.3.1 Nachweis der Enzymaktivität 4.3.2 Wirksamkeit des Enzyms TEM-1-His in Abhängigkeit von ausgewählten Randbedingungen 4.3.2.1 Variation der Enzymkonzentration 4.3.2.2 Variation der Pufferkonzentration und Pufferart 4.3.2.3 Variation des pH-Wertes 4.3.2.4 Variation der Temperatur 4.3.2.5 Variation des Substrates 4.3.2.6 Variation der Substratkonzentration 4.3.2.7 Kinetik der enzymatischen Reaktion mit TEM-1-His 4.3.2.8 Untersuchungen zur Umsetzung in Realwässern 4.3.2.9 Langzeitstabilität der isolierten TEM-1-His 4.3.3 Zwischenfazit: spezifische enzymatische Aktivität der TEM-1-His in Abhängigkeit von verschiedenen Versuchsparametern 4.4 Einsatz von Esterase Ere-A-haltigen Rohextrakten 4.4.1 Nachweis der Enzymaktivität im Rohextrakt 4.4.2 Wirksamkeit der Esterase Ere-A in Abhängigkeit von ausgewählten Randbedingungen 4.4.2.1 Einfluss verschiedener Puffer 4.4.2.2 Einfluss von C- und N-terminal angefügten Sequenzen 4.4.2.3 Substratspezifität 4.4.3 Zwischenfazit 4.5 Charakterisierung von Transformationsprodukten 4.5.1 Vorbemerkungen 4.5.2 Transformationsprodukte bei der Umsetzung von β-Lactam-Antibiotika 4.5.3 Einsatz der Esterase Ere A zur Transformation von Makrolid-Antibiotika 4.5.3.1 Transformationsprodukte von Erythromycin 4.5.3.2 Transformationsprodukte von Clarithromycin 4.5.3.3 Transformationsprodukte von Roxithromycin 4.5.4 Zwischenfazit 5 Zusammenfassung 6 Ausblick Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Anhang A-1 Weitere Analysenmodi bei der Tandem-Massenspektrometrie A-2 Verwendete Geräte und Chemikalien A-3 HPLC-Methoden A-4 Massenspektrometrische Parameter A-5 Erster Versuch zum Nachweis der enzymatischen Aktivität von TEM-1-haltigen Kulturüberstand A-6 Nachweis der Inhibitorwirkung von Sulbactam in Kombination mit TEM-1-His A-7 TEM-1: Variation der Substratkonzentration A-8 TEM-8: Substratspezifität A-9 Vergleich der AMP-Umsetzung mit TEM-1- und TEM-8-haltigen Kulturüberständen sowie den Rohextrakten A-10 TEM-1-His: Variation des pH-Wertes A-11 TEM-1-His: Substratspezifität A-12 Ere-A: Variation der Puffer A-13 Ere-A: Substratspezifität Selbstständigkeitserklärung

Page generated in 0.1514 seconds