• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • Tagged with
  • 15
  • 15
  • 15
  • 15
  • 12
  • 12
  • 12
  • 10
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Automatic Random Variate Generation for Simulation Input

Hörmann, Wolfgang, Leydold, Josef January 2000 (has links) (PDF)
We develop and evaluate algorithms for generating random variates for simulation input. One group called automatic, or black-box algorithms can be used to sample from distributions with known density. They are based on the rejection principle. The hat function is generated automatically in a setup step using the idea of transformed density rejection. There the density is transformed into a concave function and the minimum of several tangents is used to construct the hat function. The resulting algorithms are not too complicated and are quite fast. The principle is also applicable to random vectors. A second group of algorithms is presented that generate random variates directly from a given sample by implicitly estimating the unknown distribution. The best of these algorithms are based on the idea of naive resampling plus added noise. These algorithms can be interpreted as sampling from the kernel density estimates. This method can be also applied to random vectors. There it can be interpreted as a mixture of naive resampling and sampling from the multi-normal distribution that has the same covariance matrix as the data. The algorithms described in this paper have been implemented in ANSI C in a library called UNURAN which is available via anonymous ftp. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
12

A Simple Universal Generator for Continuous and Discrete Univariate T-concave Distributions

Leydold, Josef January 2000 (has links) (PDF)
We use inequalities to design short universal algorithms that can be used to generate random variates from large classes of univariate continuous or discrete distributions (including all log-concave distributions). The expected time is uniformly bounded over all these distributions. The algorithms can be implemented in a few lines of high level language code. In opposition to other black-box algorithms hardly any setup step is required and thus it is superior in the changing parameter case. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
13

A Note on Transformed Density Rejection

Leydold, Josef January 1999 (has links) (PDF)
In this paper we describe a version of transformed density rejection that requires less uniform random numbers. Random variates below the squeeze are generated by inversion. For the expensive part between squeeze and density an algorithm that uses a coverering with triangles is introduced. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
14

Short Universal Generators Via Generalized Ratio-of-Uniforms Method

Leydold, Josef January 2000 (has links) (PDF)
We use inequalities to design short universal algorithms that can be used to generate random variates from large classes of univariate continuous or discrete distributions (including all log-concave distributions). The expected time is uniformly bounded over all these distributions for a particular generator. The algorithms can be implemented in a few lines of high level language code. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
15

Smoothed Transformed Density Rejection

Leydold, Josef, Hörmann, Wolfgang January 2003 (has links) (PDF)
There are situations in the framework of quasi-Monte Carlo integration where nonuniform low-discrepancy sequences are required. Using the inversion method for this task usually results in the best performance in terms of the integration errors. However, this method requires a fast algorithm for evaluating the inverse of the cumulative distribution function which is often not available. Then a smoothed version of transformed density rejection is a good alternative as it is a fast method and its speed hardly depends on the distribution. It can easily be adjusted such that it is almost as good as the inversion method. For importance sampling it is even better to use the hat distribution as importance distribution directly. Then the resulting algorithm is as good as using the inversion method for the original importance distribution but its generation time is much shorter. / Series: Preprint Series / Department of Applied Statistics and Data Processing

Page generated in 0.0974 seconds