• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 2
  • 2
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 17
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Conformational Dynamics Associated with Ligand Binding to Vertebrate Hexa-coordinate Hemoglobins

Astudillo, Luisana 17 March 2014 (has links)
Neuroglobin (Ngb) and cytoglobin (Cygb) are two new additions to the globin family, exhibiting heme iron hexa-coordination, a disulfide bond and large internal cavities. These proteins are implicated in cytoprotection under hypoxic-ischemic conditions, but the molecular basis of their cytoprotective function is unclear. Herein, a photothermal and spectroscopic study of the interactions of diatomic ligands with Ngb, Cygb, myoglobin and hemoglobin is presented. The impact of the disulfide bond in Ngb and Cygb and role of conserved residues in Ngb His64, Val68, Cys55, Cys120 and Tyr44 on conformational dynamics associated with ligand binding/dissociation were investigated. Transient absorption and photoacoustic calorimetry studies indicate that CO photo-dissociation from Ngb leads to a volume expansion (13.4±0.9 mL mol-1), whereas a smaller volume change was determined for Ngb with reduced Cys (ΔV=4.6±0.3 mL mol-1). Furthermore, Val68 side chain regulates ligand migration between the distal pocket and internal hydrophobic cavities since Val68Phe geminate quantum yield is ~2.7 times larger than that of WT Ngb. His64Gln and Tyr44Phe mutations alter the thermodynamic parameters associated with CO photo-release indicating that electrostatic/hydrogen binding network that includes heme propionate groups, Lys 67, His64, and Tyr 44 in Ngb modulates the energetics of CO photo-dissociation. In Cygb, CO escape from the protein matrix is fast (< 40 ns) with a ΔH of 18±2 kcal mol-1 in Cygbred, whereas disulfide bridge formation promotes a biphasic ligand escape associated with an overall enthalpy change of 9±4 kcal mol-1. Therefore, the disulfide bond modulates conformational dynamics in Ngb and Cygb. I propose that in Cygb with reduced Cys the photo-dissociated ligand escapes through the hydrophobic tunnel as occurs in Ngb, whereas the CO preferentially migrates through the His64 gate in Cygbox. To characterize Cygb surface 1,8-ANS interactions with Cygb were investigated employing fluorescence spectroscopy, ITC and docking simulations. Two 1,8-ANS binding sites were identified. One binding site is located close to the extended N-terminus of Cygb and was also identified as a binding site for oleate. Furthermore, guanidinium hydrochloride-induced unfolding studies of Cygb reveal that the disulfide bond does not impact Cygb stability, whereas binding of cyanide slightly increases the protein stability.
12

Interligand Electron Transfer Dynamics in Ruthenium Polypyridyl Complexes for Dye Sensitized Solar Cells Determined with Femtosecond Transient IR Absorption Anisotropy

Pettersson Rimgard, Belinda January 2016 (has links)
Interligand electron transfer (ILET) may be an essential parameter for the injection ofan electron from the dye into the semiconductor surface of a dye sensitized solar cell(DSSC). Without an efficient injection, competing recombination paths may become apparent. For the future development and design of DSSCs, with the hope of increased energy conversion efficiencies, the ILET dynamics is of great importance. For a long time, the most impressive DSSCs were sensitized with polypyridyl ruthenium dyes for which injection has shown to vary from sub-ps to ns duration. It may therefore be crucial to find means of studying the underlying reasons for the slow injection and in this thesis such an attempt has been made. ILET dynamics has been examined using fs Transient Absorption Anisotropy Spectroscopy in both the IR and Visible. This was done for two ruthenium dye complexes: N712 (cis-diisothiocyanato-bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II)) and RuL3 (tris(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II)) which are among the best performing dyes in DSSCs. The initial anisotropy was used to determine whether the excitation is localized on the photoselected ligand or delocalized over the available bipyridyl ligands. The depolarization dynamics of the anisotropy decay showed that the ILET must occur on the sub-ps time scale, resulting in rapid loss of the memory of which ligand was photoselected in the absorption process. This means formation of a metal-to-ligand-charge-transfer state that is randomized over the bipyridyl ligands. These results indicate that ILET dynamics should not limit the injection in DSSCs.
13

Teplotní závislost triplet-tripletního přenosu energie ve fotosyntetických světlosběrných komplexech / Temperature dependence of the triplet-triplet energy transfer in photosynthetic light-harvesting complexes

Vinklárek, Ivo January 2017 (has links)
Toxic singlet oxygen can be populated by the quenching of triplet states of chlorophyll (Chl). In photosynthetic light-harvesting complexes (LHCs), the gen- eration of singlet oxygen is prevented by a photoprotective mechanism based on an energy transfer from Chl triplets to carotenoids, which occurs via a Dexter mechanism (DET). The temperature dependence of the DET was studied in three selected LHCs by means of transient absorption spectroscopy. The emphasis was on a chlorophyll a-chlorophyll c2-peridinin-protein complex (acpPC) of Dinoflagel- late Amphidinium carterae. The results obtained from acpPC were compared with those for LHC-II from pea and chlorosomes of Chloroflexus aurantiacus. All three antennas exhibit high efficiency and fast rate of chlorophyll triplet quenching by carotenoids at room temperature, which prevents the accumulation of Chl triplets. The fast rate of quenching persists at low temperatures (≥77 K) in the case of LHC-II. However, the efficiency of the Chl triplets quenching is lower as proved by a detection of long-lived Chl triplets with a millisecond lifetime. These triplets were assigned to peripheral Chls that are not neighbouring with carotenoids active at 77 K. A similar population of long-lived Chl triplets was detected in the acpPC complex. In acpPC, the rate of the...
14

Dynamika tripletních stavů pigmentů ve fotosyntetických světlosběrných komplexech / Dynamika tripletních stavů pigmentů ve fotosyntetických světlosběrných komplexech

Kvíčalová, Zuzana January 2011 (has links)
Chlorophyll molecules in their triplet excited state can react with the ground state oxygen, producing oxygen in a singlet excited state, which is very reactive and thus very harmful to the light-harvesting complex. Photosynthetic organisms employ carotenoids to prevent the damage by quenching both excited (singlet) states of oxygen and excited triplet states of chlorophyll. In this work, we use ns transient absorption spectroscopy and global analysis to study the dynamics of carotenoid and chlorophyll triplet states in two light-harvesting complexes of Amphidinium carterae, the Peridinin-Chlorophyll a-Protein complex (PCP) and the main light-harvesting complex (LHCP). It appears that at room temperature all triplets are transferred from chlorophylls to carotenoids within ~ 5 ns, providing a very efficient protection against formation of singlet oxygen. One carotenoid triplet with a lifetime of ~ 10.2 µs participating in the chlorophyll triplet quenching was observed in the PCP sample, while results from LHCP suggest that two carotenoid triplets with a similar lifetime of ~ 2.5 µs contribute to quenching of chlorophyll triplet states. The two carotenoid triplets are attributed to peridinin placed in a polar environment and peridinin placed in a non-polar environment in the LHCP complex.
15

Laser Spectroscopic Studies of Ultrafast Charge Transfer Processes in Solar Cell Materials

Kolodziej, Charles 01 June 2020 (has links)
No description available.
16

Tuning the Excited States and Reactivity of Polypyridyl Ru(II) Complexes for Photochemotherapy

Loftus, Lauren Marie January 2019 (has links)
No description available.
17

Charge Carrier Dynamics of Bare and Dye-Sensitized Cerium Oxide Nanoparticles

Empey, Jennifer January 2021 (has links)
No description available.
18

Photophysics and Excited State Electronic Communication in Quadruply Bonded Paddlewheel Complexes of Molybdenum and Tungsten

Alberding, Brian 12 September 2011 (has links)
No description available.
19

Ultrafast spectroscopy of organic semiconductors : singlet fission and nonfullerene acceptors for organic photovoltaics

Kim, Vincent Oteyi January 2019 (has links)
In this dissertation, we investigate two emerging strategies for enhancing the performance of organic photovoltaics. The first takes advantage of a process called singlet exciton fission, and the second embodies an exodus from the fullerene electron acceptors prominent in organic solar cells. Indeed, this versatile class of tunable small molecules are aptly termed nonfullerene acceptors. However, both strategies would benefit from a greater understanding of underlying principles. Singlet exciton fission is a photon-multiplying process in which a singlet exciton from a high-energy absorbed photon splits into two triplet excitons. The process could significantly reduce energy lost to heat in photovoltaic devices, but its mechanisms are still misunderstood. One model involves direct coupling between the singlet and triplet states, and another model involves an intermediate charge transfer state. Transient absorption spectroscopy allowed us to examine singlet fission in films of pentacene, fluorinated pentacene, and coevaporated blends of various mixing ratios. We directly observe an intermolecular charge transfer state during singlet fission in solid films of coevaporated pentacene and peruoropentacene, which supports the model of charge transfer state-mediated singlet fission. Furthermore, we successfully induced singlet fission in one blend by directly exciting the charge transfer state below the bandgap. We use various types of steady state and time-resolved spectroscopy to characterize two types of nonfullerene electron acceptors. The first type is a group of tetraazabenzodiuoranthene diimide (BFI) dimers and a BFI monomer. The BFI dimers were designed to have twisted, nonplanar 3-dimensional structures and have helped achieve power conversion efficiencies of over 8% in organic solar cells. The other type of nonfullerene acceptor is a calamitic small molecule, and we consider the BAF-4CN electron acceptor, which has also been used in a solar cell whose efficiency exceeded 8%. Spectroscopic studies give insight into the performances of these nonfullerene devices in relation to fullerene-derivative counterparts. We find that the nonfullerene blends suffer from more geminate charge recombination. However, despite this drawback, in some cases, slower rates of nongeminate recombination may lead to successful power conversion efficiencies in nonfullerene solar cells.
20

Carotenoid Excited State Processes by Femtosecond Time-Resolved Pump-Probe and Multi-Pulse Spectroscopies

WEST, Robert G. January 2018 (has links)
This Ph.D. thesis is an exploration of carotenoids by ultrafast, time-resolved absorption spectroscopy to investigate their complicated relaxation processes, means of energy transfer, and dependence on structure. The introduction begins with an overview of carotenoids, intended for the reader to appreciate their importance and their complexity as revealed by decades of research in carotenoid photophysics. To understand the primary concerns of this research field, the reader is guided through basic theory of energetic processes, the experimental method, and methods of analysis. The main body of the text is the Research Chapter, containing four sections, each describing research using varied ultrafast transient absorption spectroscopies on carotenoids in solution and when bound to a host protein. Section 2.1 concerns an equilibration phenomenon in the lowest excited state of the carotenoid fucoxanthin in various solutions and temperatures by a multi-pulse transient absorption method. The same method is applied to fucoxanthin in a host antennae protein of the pennate diatom Phaeodactylum tricornutum to investigate the function of the equilibration in energy transfer to Chlorophyll a in Section 2.2. The next two sections regard the effect of carotenoid structure on its relaxation dynamics. Section 2.3 investigates the effect of the non-conjugated acyloxy group of two fucoxanthin derivatives in various solvents. Here, one of the energetic states involved in the equilibrium mentioned above is seen drastically affected. Lastly, Section 2.4 investigates alloxanthin, a carotenoid with an unusual pair of carbon-carbon triple bonds. Their effect on the conjugation is evaluated based upon the molecules' decay dynamics. A general summary and conclusion is provided at the end.

Page generated in 0.1481 seconds