• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rheology of porous rhyolite

Robert, Geneviève 05 1900 (has links)
I describe an experimental apparatus used to perform deformation experiments relevant to volcanology. The apparatus supports low-load, high-temperature deformation experiments under dry and wet conditions on natural and synthetic samples. The experiments recover the transient rheology of complex (melt ± porosity ± solids) volcanic materials during uniaxial deformation. The key component to this apparatus is a steel cell designed for high-temperature deformation experiments under controlled water pressure. Experiments are run under constant displacement rates or constant loads; the range of accessible experimental conditions include: 25 - 1100 °C, load stresses 0 to 150 MPa, strain rates 10⁻⁶ to 10⁻² s⁻¹, and fluid pressures 0-150 MPa. I present a suite of high-temperature, uniaxial deformation experiments performed on 25 by 50 mm unjacketed cores of porous Φ∼0.8) sintered rhyolitic ash. The experiments were performed at, both, atmospheric (dry) and elevated water pressure conditions (wet). Dry experiments were conducted mainly at 900 °C, but also included a suite of lower temperature experiments at 850, 800 and 750 °C. Wet experiments were performed at ∼650 °C under water pressures of 1, 2.5, 3, and 5 MPa, and at a fixed PH2O of ∼2.5 MPa for temperatures of ∼385, 450, and 550 °C. During deformation, strain is manifest by shortening of the cores, reduction of porosity, flattening of ash particles, and radial bulging of the cores. The continuous reduction of porosity leads to a dynamic transient strain-dependent rheology and requires strain to be partitioned between a volume (porosity loss) and a shear (radial bulging) component. The effect of increasing porosity is to expand the window for viscous deformation for dry melts by delaying the onset of brittle deformation by ∼50 °C (875 °C to 825 °C). The effect is more pronounced in hydrous melts (∼0.67 — 0.78 wt. % H₂0) where the viscous to brittle transition is depressed by ∼140 to 150 °C. Increasing water pressure also delays the onset of strain hardening due to compaction-driven porosity reduction. These rheological data are pertinent to volcanic processes where high-temperature porous magmas I liquids are encountered (e.g., magma flow in conduits, welding of pyroclastic materials).
2

Rheology of porous rhyolite

Robert, Geneviève 05 1900 (has links)
I describe an experimental apparatus used to perform deformation experiments relevant to volcanology. The apparatus supports low-load, high-temperature deformation experiments under dry and wet conditions on natural and synthetic samples. The experiments recover the transient rheology of complex (melt ± porosity ± solids) volcanic materials during uniaxial deformation. The key component to this apparatus is a steel cell designed for high-temperature deformation experiments under controlled water pressure. Experiments are run under constant displacement rates or constant loads; the range of accessible experimental conditions include: 25 - 1100 °C, load stresses 0 to 150 MPa, strain rates 10⁻⁶ to 10⁻² s⁻¹, and fluid pressures 0-150 MPa. I present a suite of high-temperature, uniaxial deformation experiments performed on 25 by 50 mm unjacketed cores of porous Φ∼0.8) sintered rhyolitic ash. The experiments were performed at, both, atmospheric (dry) and elevated water pressure conditions (wet). Dry experiments were conducted mainly at 900 °C, but also included a suite of lower temperature experiments at 850, 800 and 750 °C. Wet experiments were performed at ∼650 °C under water pressures of 1, 2.5, 3, and 5 MPa, and at a fixed PH2O of ∼2.5 MPa for temperatures of ∼385, 450, and 550 °C. During deformation, strain is manifest by shortening of the cores, reduction of porosity, flattening of ash particles, and radial bulging of the cores. The continuous reduction of porosity leads to a dynamic transient strain-dependent rheology and requires strain to be partitioned between a volume (porosity loss) and a shear (radial bulging) component. The effect of increasing porosity is to expand the window for viscous deformation for dry melts by delaying the onset of brittle deformation by ∼50 °C (875 °C to 825 °C). The effect is more pronounced in hydrous melts (∼0.67 — 0.78 wt. % H₂0) where the viscous to brittle transition is depressed by ∼140 to 150 °C. Increasing water pressure also delays the onset of strain hardening due to compaction-driven porosity reduction. These rheological data are pertinent to volcanic processes where high-temperature porous magmas I liquids are encountered (e.g., magma flow in conduits, welding of pyroclastic materials).
3

Rheology of porous rhyolite

Robert, Geneviève 05 1900 (has links)
I describe an experimental apparatus used to perform deformation experiments relevant to volcanology. The apparatus supports low-load, high-temperature deformation experiments under dry and wet conditions on natural and synthetic samples. The experiments recover the transient rheology of complex (melt ± porosity ± solids) volcanic materials during uniaxial deformation. The key component to this apparatus is a steel cell designed for high-temperature deformation experiments under controlled water pressure. Experiments are run under constant displacement rates or constant loads; the range of accessible experimental conditions include: 25 - 1100 °C, load stresses 0 to 150 MPa, strain rates 10⁻⁶ to 10⁻² s⁻¹, and fluid pressures 0-150 MPa. I present a suite of high-temperature, uniaxial deformation experiments performed on 25 by 50 mm unjacketed cores of porous Φ∼0.8) sintered rhyolitic ash. The experiments were performed at, both, atmospheric (dry) and elevated water pressure conditions (wet). Dry experiments were conducted mainly at 900 °C, but also included a suite of lower temperature experiments at 850, 800 and 750 °C. Wet experiments were performed at ∼650 °C under water pressures of 1, 2.5, 3, and 5 MPa, and at a fixed PH2O of ∼2.5 MPa for temperatures of ∼385, 450, and 550 °C. During deformation, strain is manifest by shortening of the cores, reduction of porosity, flattening of ash particles, and radial bulging of the cores. The continuous reduction of porosity leads to a dynamic transient strain-dependent rheology and requires strain to be partitioned between a volume (porosity loss) and a shear (radial bulging) component. The effect of increasing porosity is to expand the window for viscous deformation for dry melts by delaying the onset of brittle deformation by ∼50 °C (875 °C to 825 °C). The effect is more pronounced in hydrous melts (∼0.67 — 0.78 wt. % H₂0) where the viscous to brittle transition is depressed by ∼140 to 150 °C. Increasing water pressure also delays the onset of strain hardening due to compaction-driven porosity reduction. These rheological data are pertinent to volcanic processes where high-temperature porous magmas I liquids are encountered (e.g., magma flow in conduits, welding of pyroclastic materials). / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
4

The Dynamic Behavior of a Concentrated Composite Fluid Containing Non-Brownian Glass Fibers in Rheometrical Flows

Eberle, Aaron Paul Rust 08 August 2008 (has links)
With this research, we work towards the overall objective of being able to accurately simulate fiber orientation in complex flow geometries of composite fluids of industrial significance. The focus of this work is to understand the rheological behavior of these materials and its connection to fiber orientation as determined in simple shear flow. The work includes the development of a novel approach to characterizing the transient rheology; an experimental study of the relationship between the stress growth functions in startup of flow and the fiber orientation; a critical assessment of the limitations of current fiber suspension theory; and an approach to determining unambiguous model parameters by fitting. A key difference between the rheological studies performed in this work and others is the use of a cone-and-plate device combined with "donut" shaped samples (CP-D) to prevent boundary effects on the measurement. The conventional method for obtaining transient rheological data is to use parallel disk (PP) geometry set at a gap where the measurements are independent of disk spacing. However, this work suggests that the inhomogeneous velocity gradient imposed by the PP geometry induces excessive fiber-fiber contact contributing to exaggerated measurements of the stress growth functions. An experimental study of the transient rheological behavior of a 30 wt% short glass fiber-filled polybutylene terephthalate was performed using the CP-D. Stress growth measurements during startup of flow were performed in combination with direct measurement of the fiber orientation to determine the relationship between the transient rheology and the fiber microstructure. The well defined fiber orientation and rheological experiments allowed for a quantitative assessment of current fiber suspension theory. Comparison between the experimental fiber orientation and predictions based on Jeffery's equation and the Folgar-Tucker model show that the fiber orientation evolves much slower than predicted. In addition, the addition of a "slip" term improved the agreement between the predictions and experimental results. Predictions using the Lipscomb model coupled with the Folgar-Tucker model, with slip, were fit to the transient stresses to determine the feasibility of fitting unambiguous model parameters for a specific composite fluid. Model parameters determined by fitting at a shear rate of 6 s-1 allowed for reasonable predictions of the transient stresses in flow reversal experiments at all the shear rates tested. / Ph. D.
5

Relations structures-propriétés de polymères améliorants de viscosité dans les lubrifiants moteur / Structures-properties relationships of viscosity modifier polymers in lubricants

Chaveroux, Damien 31 March 2015 (has links)
Le développement des lubrifiants est un véritable levier pour les constructeurs automobiles et les pétroliers pour minimiser les pertes d'énergie dues aux frottements dans les moteurs. La viscosité est le principal paramètre sur lequel les formulateurs peuvent jouer pour abaisser les frottements. Cette thèse porte sur l'étude du rôle et des actions des additifs améliorants de viscosité (AVI) dans les lubrifiants moteur. L'objectif de cette thèse est de corréler l'étude portée à l'échelle moléculaire aux propriétés macroscopiques ainsi qu'aux performances des lubrifiants moteur pour pouvoir orienter les formulateurs vers une ou des molécules cibles qui permettront de répondre le mieux possible à ces problématiques. Ce travail est consacré à des poly-diène-styrène hydrogénés (P-diène-SH) et des copolymères éthylène propylène (EPC). Dans un premier temps, des études structurales des polymères AVI et rhéologiques des solutions ont permis de mettre en évidence l'influence des différentes chimies et structures des polymères sur leurs propriétés rhéologiques. Cette étude a porté sur une large gamme de températures (-20 à +135°C), taux de cisaillement (0 à 107s-1) et concentrations permettant de caractériser la configuration des polymères dans des conditions correspondant à l’application. Dans un second temps, ces propriétés rhéologiques ont été corrélées avec les coefficients de frottement et les épaisseurs de film centrales dans un contact de type sphère/plan en tribologie.Enfin, la capacité des chaînes de ces polymères à se rompre sous la contrainte d’un fort taux de cisaillement en écoulement pulsé ou continu a été étudiée et reliée à la configuration des polymères AVI en solution ainsi que leurs structures. L’ensemble de ces données a été utilisé pour proposer une structure chimique et une architecture présentant des propriétés AVI, une bonne résistance mécanique et un comportement tribologique satisfaisant. / The development of lubricants is a real challenge for the automotive and the petroleum industries to reduce the energy losses in engines due to frictions. The viscosity is the main parameter that the lubricant formulators can vary to reduce the frictions. This PhD deals with the role and mode of actions of viscosity modifier polymers (VM polymers) in lubricants.The purpose of this PhD is to correlate the study at the molecular scale with the macroscopic properties and the lubricant performances in order to orient the formulators towards one or several target molecules which could present the best properties.This work consisted in characterizing hydrogenated Poly-diene-styrene (P-diene-SH) and ethylene-propylene-copolymers (EPC).First, studies on the structure of VM polymers and on rheological properties of the solutions have shown the influence of the different chemical structures and polymer architectures on their rheological properties. This study was carried out on a large scale of temperatures (-20 à +135°C), shear rates (0 à 107s-1) and concentrations leading to characterizations under conditions corresponding to practical conditions.Secondly, these rheological properties were correlated with frictions coefficients and the film thickness in a sphere/plate contact in tribology.Finally, the ability of the polymer chains to break when a high shear rate was applied in a continuous or pulsed flow was studied and related to the chains configurations of the VM polymer and their structure.All these data were further used to propose a chemical structure and a polymer architecture leading to viscosity improved properties, a good resistance to degradation and a satisfactory behavior in tribology.

Page generated in 0.0784 seconds