• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 12
  • 12
  • 12
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Separation and recovery of selected transition-metal catalyst systems using membrane processes

Xaba, Bongani Michael 07 1900 (has links)
Thesis (M. Tech. Chemistry, Dept. of Chemistry, Faculty of Applied and Computer Sciences)--Vaal University of Technology, 2010. / Membrane separation processes offer a promising alternative to energy-intensive separation processes such as distillation and solvent extraction. NF and RO are among the most investigated membrane processes with a potential use in the chemical industry. Carbon-carbon coupling reactions feature in the top ten most used reactions in the chemical industry. These reactions often use homogeneous palladium, nickel and other precious catalysts which are often difficult to separate from reaction products. This leads to potential product contamination and loss of active catalysts. This not only poses a threat to the environment but is also costly to the chemical industry. The purpose of this study was to investigate the efficiency of the recovery of the metal catalysts by selected membrane processes. Four commercial polymeric NF and RO membranes (NF90, NF270, BW30 and XLE) were selected for the study. Palladium catalysts commonly used in Heck and Suzuki coupling reactions were selected. These are Pd(OAc)2, Pd(OAc)2(PPh3)2, PdCl2 and Pd(PPh3)2Cl2. A range of organic solvents were also selected for the study. All the membranes were characterized for pure water permeability, pure solvent permeability, swelling, surface morphology and chemical structure. The chemical and catalytic properties of the catalysts were determined. Catalytic activity was investigated by performing coupling reactions. These catalysts generally performed well in the Heck coupling reaction with sufficient yields realized. The catalysts showed poor activities in the Suzuki and Sonogashira coupling reactions. These coupling reaction systems were affected by rapid palladium black formation. vi Catalyst retention studies showed the influence of membrane-solute interactions such as steric hindrance and size exclusion. The larger catalyst, Pd(OAc)2(PPh3)2 was rejected better by all the membranes irrespective of the solvent used. The smaller catalyst, Pd(OAc)2 was the most poorly rejected catalyst. This catalyst showed signs of instability in the selected solvents. An interesting finding from this study is that of higher rejections in water compared to other solvents for a particular catalyst. In this regard, the influence of solventsolute effects was evident. Generally, higher rejections were observed in solvents with higher polarity. This has been explained by the concept of solvation. It has been shown that solvents with different polarity solvate solutes differently, therefore leading to a different effective solute diameter in each solvent. Catalyst separation using NF90 membrane was attempted for the Heck coupling reaction system. The reaction-separation procedure was repeated for two filtration cycles with rapid activity decline evident. This was regarded as very poor showing of the catalyst separation efficiency of the membrane. Other authors in similar studies using SRNF membranes have reported reaction-separation processes of up to seven cycles. This observation shows the inferiority of polymeric membranes in organic solvent applications such as catalyst separation.
12

Immobilisation de catalyseurs moléculaires de polymérisation d’oléfines sur nanomatériaux / Immobilization of molecular late transition metal polymerization catalysts on nanomaterials

Zhang, Liping 24 January 2014 (has links)
Le présent travail de thèse décrit le développement de systèmes actifs de polymérisation d’oléfines basés sur des métaux de fin de transition (nickel et fer) supportés sur des nanomatériaux. Le chapitre I décrit l’état de l’art des systèmes catalytiques supportés ou non pour la polymérisation d’oléfines. Dans le chapitre II, nous décrivons la polymérisation de l’éthylène en utilisant des catalyseurs de nickel contenant un groupement –NH2 pour leur immobilisation covalente sur nanotubes de carbone ; montrant l’influence positive de l’immobilisation : les catalyseurs ainsi supportés sont en effet à la fois plus actifs et conduisant à des polymères de plus haut poids moléculaire. Dans le chapitre III, des complexes de fer contenant un groupement pyrène sont décrits et immobilisés sur nanotubes de carbone par interaction non covalente π-π. Dans ce cas, à la fois les systèmes homogènes et leurs analogues supportés catalysent la réaction de polymérisation de l’éthylène avec des activités particulièrement élevées. Il a également pu être mis en évidence l’importante influence du support carboné sur les performances du système catalytique ainsi que sur la structure des polymères obtenus. Différents types de complexes de nickel contenant un ligand imino-pyridine et différents groupes polyaromatiques ont été synthétisés et leur utilisation en polymérisation de l’éthylène est décrite dans le chapitre IV. L’influence de l’addition de faibles quantités de matériaux nanocarbonés (nanotubes de carbone ou graphène) au milieu réactionnel a ainsi été étudiée. Le graphène s’est dans ce cas révélé particulièrement bénéfique sur les performances du catalyseur. Enfin, le chapitre V décrit la polymérisation de l’isoprène à l’aide de catalyseurs de fer contenant des groupements polyaromatiques permettant leur immobilisation à la surface de nanoparticules de fer. Ces systèmes ont ensuite pu être confinés dans des nanotubes de carbone. Les systèmes catalytiques décrits sont particulièrement actifs produisant des polyisoprènes à température de transition vitreuse élevée et avec une haute sélectivité trans-1,4-polyisoprène. / This present thesis deals with the development of active olefin polymerization catalysts based on late transition metal (nickel and iron) imino-pyridine complexes supported on nanomaterial. Chapter I gives a comprehensive literature review of unsupported and supported ethylene polymerization catalyst. In Chapter II we report the ethylene polymerization studies using nickel complexes containing an –NH2 group for covalent immobilization on multi-walled carbon nanotubes (MWCNTs) of the corresponding precatalysts. Comparison of the homogeneous catalysts with their supported counterparts evidenced higher catalytic activity and higher molecular weights for the polymers produced. In Chapter III, iron complexes containing a pyrene group have been synthesized and immobilized on MWCNTs through non-covalent π-π interactions between pyrene group and surface of MWCNTs. Activated by MMAO, both the iron complexes and immobilized catalysts show high activities for ethylene polymerization. It was possible to evidence that MWCNTs have a great influence on the catalytic activity and on the structure of the resulting polyethylenes. Imino-pyridine nickel complexes containing various kinds of aromatic groups have been synthesized in Chapter IV and polymerization conditions in the presence and in the absence of nanocarbon materials, such as MWCNTs or few layer graphene (FLG), are discussed. For those nickel catalysts bearing 1-aryliminoethylpyridine ligands, the presence of MWCNTs in the catalytic mixture allows the formation of waxes of lower molecular weight and polydispersity, whereas the presence of FLG proved to be beneficial for the catalytic activity. In Chapter V, isoprene polymerization catalyzed by iron complexes containing polyaromatic groups and non-covalently supported on nanoparticles and confined into the inner cavity of MWCNTs (Cat@NPs and Cat@NPs@MWCNTs) are investigated. Iron complexes show excellent activity for the isoprene polymerization and produced high glass temperature polyisoprene with a high trans-1,4-polyisoprene selectivity. Polymer nanocomposites are produced by supported catalysts and, transmission electron microscopy (TEM) evidenced efficient coating of the resulting polyisoprene around the oxygen sensitive iron nanoparticles.

Page generated in 0.3986 seconds