Spelling suggestions: "subject:"atransition metal surfaces"" "subject:"2transition metal surfaces""
1 |
Estudos de primeiros princípios da adsorção de água e de etanol sobre ligas de superfície de metais de transição sob efeitos de deformação expansiva e compressiva / First principles studies of water and ethanol adsorption on transition metal alloys surface under expansive and compressive strain effectsFreire, Rafael Luiz Heleno 20 October 2016 (has links)
Diversos estudos experimentais e teóricos têm sugerido que a formação de ligas de superfície ou a deposição de monocamadas de metal de transição (TM) tensionadas sobre suportes de TM pode ser considerada como uma via para a produção de novos catalisadores. Assim, um entendimento mais profundo das propriedades energéticas, geométricas e catalíticas dessas superfícies, bem como seus efeitos sobre as propriedades de adsorção de moléculas como água e etanol se tornam muito interessantes e importantes para futuras aplicações. Nesse trabalho relatamos uma extensa investigação de primeiros princípios baseada na teoria funcional da densidade desde os processos de adsorção de adátomos de TM (Rh, Pd, Ir, Pt) sobre as superfícies Cu(111) e Au(111) considerando recobrimentos que variam de 1/9, 2/9 até 1 monocamada (ML), até a adsorção de monômeros das moléculas de água e de etanol sobre diferentes ambientes proporcionados pelas diferentes superfícies estudadas, bem como uma análise das interações de van de Waals (vdW), de grande relevância na descrição desses sistemas. Estudamos aspectos de formação e estabilidade de diferentes superfícies com diferentes recobrimentos de adátomos. Em baixos recobrimentos, apesar dos diferentes raios atômicos dos ádatomos e átomos do substrato, sítios incorporados na camada mais externa do substrato são mais favoráveis energeticamente do que sítios sobre a superfície do mesmo. Nos sistemas TM/Au(111), essa tendência segue até o limite em que todos os átomos do substrato fiquem expostos à região de vácuo, com uma camada adjacente de adátomos; válido também para os sistemas Rh/Cu(111). A adsorção de Pd, Ir e Pt em Cu(111), segue a mesma tendência até recobrimentos de 4/9, 8/9, 6/9 ML, ficando os adátomos expostos à região de vácuo para maiores recobrimentos. Para sistemas TM/Au(111), temos uma deformação expansiva, devido à mistura de adátomos, com raios menores que o Au, na primeira camada do substrato, enquanto para sistemas TM/Cu(111) ela é compressiva, em particular para altos recobrimentos de Pd, Ir, Pt, favorecendo sua adsorção sobre a superfície do substrato. Essas alterações nas propriedades das superfícies deslocam o centro da banda dos estados d ocupados, possibilitando \"ajustá-las\" para determinados adsorbatos. Logo, utilizamos algumas dessas superfícies para avaliar quais os efeitos sobre as propriedades de adsorção das moléculas de água e de etanol. Em todos os sistemas, as moléculas adsorvem ligam através do átomo de oxigênio, O, sobre um sítio de coordenação 1 (on-top). Esse cenário se altera conforme induzimos deformações na superfície, pois a molécula se desloca lateralmente rumo a sítios de maior coordenação; ou adicionamos correções de vdW, aumentando a interação molécula-substrato, e podendo até mesmo rearranjar a molécula sobre a superfície. Para a molécula de água, efeitos geométricos são menos pronunciados, enquanto para o etanol podem alterar drasticamente a conformação da molécula e sua orientação em relação à superfície. Assim como as correções de vdW, as deformações induzidas também afetam energia de adsorção, pois alteram a estrutura eletrônica dos substratos, tal que observamos um aumento linear das energias de adsorção em função do centro da banda dos estados d ocupados dos substratos, ainda que se observem desvios. Finalmente, pudemos contribuir para um melhor entendimento das propriedades de superfícies de metais de transição sob efeitos de deformações expansiva e compressiva, demonstrando a possibilidade de alterar suas propriedades tanto pelos diferentes recobrimentos quanto pelo tipo de deformação induzida. Além disso, comprovamos os efeitos dessas alterações sobre as propriedades de adsorção de moléculas de água e de etanol, incluindo ainda uma análise do comportamento de algumas correções de van der Waals para esses sistemas. / Many experimental and theoretical studies have been suggesting that the superficial alloys formation or a deposition of transition metal (TM) monolayers under strain over transition metal supports (substrates) can be considered as a route to produce new catalysts. Thus, a deeper understading about geometric, energetic and electronic properties of these surfaces, as well as, their effects over the molecules adsorption becomes very important for future applications. We report an extensive first principles investigation based on density functional theory, covering subjects from TM (Rh, Pd, Ir, Pt) adsorption processes on Cu(111) and Au(111) surfaces to different TM coverages (1/9, 2/9 up to 1 monolayer (ML)), up to the adsorption of water and ethanol monomers on different surface environments. Additionally, we will use van derWaals corrections, which are important to the description of these systems. We have studied formation and stability features of different surfaces with different adatoms coverage. At low coverages, despite of different atomic radius of adatoms and host atoms, incorporated sites in the topmost substrate layer are more energetically favorable than sites on the surface (overlayer). For TM/Au(111) systems, this trend follows adatom by adatom up to the limit where every atom from the substrate get exposed to the vacuum region, and has an underlying layer comprised of adatoms; it holds also for Rh/Cu(111) systems. The adsorption of Pd, Ir and Pt on Cu(111) follows the same trend until 4/9, 8/9, 6/9 ML coverages, and the adatoms get exposed to the vacuum region for higher coverages. For TM/Au(111) systems, we have an expansive strain, because of the mixture of adatoms, whose atomic radii are smaller than Au, in the topmost substrate layer, while for TM/Cu(111) systems it is compressive, in particular, for higher Pd, Ir, Pt coverages, which favors their adsorption on the overlayer. Such changes in the surface properties shift the center of gravity of the occupied d-band states, which gives the possibility to tune them to specific adsorbates. Thus, we have employed some of those surfaces to evaluate what are the effects over the adsorption properties of water and ethanol molecules. For all systems, the molecules adsorb by the oxygen atom, O, on an one-fold site (on-top). This scenario changes as we induce deformations over the surface, because the molecule has a lateral shift towards to higher coordinated sites; or when we add vdW corrections, increasing the molecule-substrate interaction, it being possible even to rearrange the molecule on the surface. For water molecule, geometric effects are less pronounced, while for ethanol they can drastically change the molecule conformation and orientation in relation to the surface. As the vdW corrections, the induced strain can also affect the adsorption energy, since they change the substrate electronic structure, and we observed a linear adsorption energy increasing against the center of gravity of the occupied d-band states of substrates, even there are some deviations. Finally, we could contribute to a better understanding about the transition metal surfaces properties over expansive and compressive strain effects, showing the possibility to change their properties either by different adatoms coverage or by induced strain. Furthermore, we prove these effects over the properties of water and ethanol molecules adsorption, also including an analysis to the van der Waals behavior for these systems.
|
2 |
Estudos de primeiros princípios da adsorção de água e de etanol sobre ligas de superfície de metais de transição sob efeitos de deformação expansiva e compressiva / First principles studies of water and ethanol adsorption on transition metal alloys surface under expansive and compressive strain effectsRafael Luiz Heleno Freire 20 October 2016 (has links)
Diversos estudos experimentais e teóricos têm sugerido que a formação de ligas de superfície ou a deposição de monocamadas de metal de transição (TM) tensionadas sobre suportes de TM pode ser considerada como uma via para a produção de novos catalisadores. Assim, um entendimento mais profundo das propriedades energéticas, geométricas e catalíticas dessas superfícies, bem como seus efeitos sobre as propriedades de adsorção de moléculas como água e etanol se tornam muito interessantes e importantes para futuras aplicações. Nesse trabalho relatamos uma extensa investigação de primeiros princípios baseada na teoria funcional da densidade desde os processos de adsorção de adátomos de TM (Rh, Pd, Ir, Pt) sobre as superfícies Cu(111) e Au(111) considerando recobrimentos que variam de 1/9, 2/9 até 1 monocamada (ML), até a adsorção de monômeros das moléculas de água e de etanol sobre diferentes ambientes proporcionados pelas diferentes superfícies estudadas, bem como uma análise das interações de van de Waals (vdW), de grande relevância na descrição desses sistemas. Estudamos aspectos de formação e estabilidade de diferentes superfícies com diferentes recobrimentos de adátomos. Em baixos recobrimentos, apesar dos diferentes raios atômicos dos ádatomos e átomos do substrato, sítios incorporados na camada mais externa do substrato são mais favoráveis energeticamente do que sítios sobre a superfície do mesmo. Nos sistemas TM/Au(111), essa tendência segue até o limite em que todos os átomos do substrato fiquem expostos à região de vácuo, com uma camada adjacente de adátomos; válido também para os sistemas Rh/Cu(111). A adsorção de Pd, Ir e Pt em Cu(111), segue a mesma tendência até recobrimentos de 4/9, 8/9, 6/9 ML, ficando os adátomos expostos à região de vácuo para maiores recobrimentos. Para sistemas TM/Au(111), temos uma deformação expansiva, devido à mistura de adátomos, com raios menores que o Au, na primeira camada do substrato, enquanto para sistemas TM/Cu(111) ela é compressiva, em particular para altos recobrimentos de Pd, Ir, Pt, favorecendo sua adsorção sobre a superfície do substrato. Essas alterações nas propriedades das superfícies deslocam o centro da banda dos estados d ocupados, possibilitando \"ajustá-las\" para determinados adsorbatos. Logo, utilizamos algumas dessas superfícies para avaliar quais os efeitos sobre as propriedades de adsorção das moléculas de água e de etanol. Em todos os sistemas, as moléculas adsorvem ligam através do átomo de oxigênio, O, sobre um sítio de coordenação 1 (on-top). Esse cenário se altera conforme induzimos deformações na superfície, pois a molécula se desloca lateralmente rumo a sítios de maior coordenação; ou adicionamos correções de vdW, aumentando a interação molécula-substrato, e podendo até mesmo rearranjar a molécula sobre a superfície. Para a molécula de água, efeitos geométricos são menos pronunciados, enquanto para o etanol podem alterar drasticamente a conformação da molécula e sua orientação em relação à superfície. Assim como as correções de vdW, as deformações induzidas também afetam energia de adsorção, pois alteram a estrutura eletrônica dos substratos, tal que observamos um aumento linear das energias de adsorção em função do centro da banda dos estados d ocupados dos substratos, ainda que se observem desvios. Finalmente, pudemos contribuir para um melhor entendimento das propriedades de superfícies de metais de transição sob efeitos de deformações expansiva e compressiva, demonstrando a possibilidade de alterar suas propriedades tanto pelos diferentes recobrimentos quanto pelo tipo de deformação induzida. Além disso, comprovamos os efeitos dessas alterações sobre as propriedades de adsorção de moléculas de água e de etanol, incluindo ainda uma análise do comportamento de algumas correções de van der Waals para esses sistemas. / Many experimental and theoretical studies have been suggesting that the superficial alloys formation or a deposition of transition metal (TM) monolayers under strain over transition metal supports (substrates) can be considered as a route to produce new catalysts. Thus, a deeper understading about geometric, energetic and electronic properties of these surfaces, as well as, their effects over the molecules adsorption becomes very important for future applications. We report an extensive first principles investigation based on density functional theory, covering subjects from TM (Rh, Pd, Ir, Pt) adsorption processes on Cu(111) and Au(111) surfaces to different TM coverages (1/9, 2/9 up to 1 monolayer (ML)), up to the adsorption of water and ethanol monomers on different surface environments. Additionally, we will use van derWaals corrections, which are important to the description of these systems. We have studied formation and stability features of different surfaces with different adatoms coverage. At low coverages, despite of different atomic radius of adatoms and host atoms, incorporated sites in the topmost substrate layer are more energetically favorable than sites on the surface (overlayer). For TM/Au(111) systems, this trend follows adatom by adatom up to the limit where every atom from the substrate get exposed to the vacuum region, and has an underlying layer comprised of adatoms; it holds also for Rh/Cu(111) systems. The adsorption of Pd, Ir and Pt on Cu(111) follows the same trend until 4/9, 8/9, 6/9 ML coverages, and the adatoms get exposed to the vacuum region for higher coverages. For TM/Au(111) systems, we have an expansive strain, because of the mixture of adatoms, whose atomic radii are smaller than Au, in the topmost substrate layer, while for TM/Cu(111) systems it is compressive, in particular, for higher Pd, Ir, Pt coverages, which favors their adsorption on the overlayer. Such changes in the surface properties shift the center of gravity of the occupied d-band states, which gives the possibility to tune them to specific adsorbates. Thus, we have employed some of those surfaces to evaluate what are the effects over the adsorption properties of water and ethanol molecules. For all systems, the molecules adsorb by the oxygen atom, O, on an one-fold site (on-top). This scenario changes as we induce deformations over the surface, because the molecule has a lateral shift towards to higher coordinated sites; or when we add vdW corrections, increasing the molecule-substrate interaction, it being possible even to rearrange the molecule on the surface. For water molecule, geometric effects are less pronounced, while for ethanol they can drastically change the molecule conformation and orientation in relation to the surface. As the vdW corrections, the induced strain can also affect the adsorption energy, since they change the substrate electronic structure, and we observed a linear adsorption energy increasing against the center of gravity of the occupied d-band states of substrates, even there are some deviations. Finally, we could contribute to a better understanding about the transition metal surfaces properties over expansive and compressive strain effects, showing the possibility to change their properties either by different adatoms coverage or by induced strain. Furthermore, we prove these effects over the properties of water and ethanol molecules adsorption, also including an analysis to the van der Waals behavior for these systems.
|
3 |
Estudo ab initio da adsorção de metanol, etanol e glicerol sobre superfícies de platina com defeitos e ligas de Pt3Ni com tensões / Ab initio study of methanol, ethanol and glycerol adsorption on defected platinum surfaces and strained Pt3Ni alloysAmaral, Rafael Costa 19 February 2019 (has links)
Diversos pesquisadores vêm sugerindo o uso de glicerol e outros alcoóis como matéria-prima para produção de bens de maior valor agregado e para geração de energia elétrica, através de células a combustível. Contudo, o sucesso dessas tecnologias de conversão depende do desenvolvimento de catalisadores mais eficientes. Nesse aspecto, abordagens teóricas se apresentam como ferramentas auxiliares, capazes de fornecer informações difíceis de serem acessadas experimentalmente e que são fundamentais para o projeto de materiais mais eficientes. Nesta tese, foram investigados, via teoria do funcional da densidade (DFT), o papel de defeitos de superfície e efeitos de tensão na adsorção de alcoóis como metanol, etanol e glicerol, sobre superfícies Pt(111) contendo defeitos e ligas de Pt3Ni(111). Para melhorar a descrição dos sistemas de adsorção, foi adicionada a correção de dispersão DFT-D3 à abordagem da DFT. Através da dinâmica molecular empregando o potencial ReaxFF, foram estudados os efeitos de temperatura sobre glicerol, em diversos níveis de recobrimento de superfície, interagindo com os substratos Pt3Ni(111). Os resultados mostram que o glicerol se liga através do oxigênio dos grupos hidróxi aos sítios top de metais de transição (TM), orientando sua cadeia carbônica quase que totalmente paralela à superfície. Os cálculos de energia de adsorção indicam que o glicerol interage mais fortemente com sítios de baixa coordenação, presentes em superfícies com defeitos, o que pode ser compreendido por meio do modelo da banda d. Além disso, a presença de múltiplos sítios de baixa coordenação favorece configurações onde o glicerol se liga à superfície por dois grupos hidróxi, um central e um terminal. Entretanto, existe uma clara preferência de alcoóis se ligarem a sítios de adsorção catiônicos, indicando que a influência de interações Coulombianas é um fator preponderante no processo de adsorção de alcoóis sobre TM. Análises de densidade eletrônica dos sistemas adsorvidos sugerem que a adsorção promove perturbações na densidade eletrônica dos alcoóis, como o deslocamento de densidade eletrônica das ligações C-O e O-H para a região de interação entre a molécula e o substrato, que estão associadas ao estiramento/enfraquecimento das ligações C-O e O-H observados através de análises estruturais. Os resultados DFT também demonstraram que a adição da correção de dispersão DFT-D3 melhorou a descrição das energias de adsorção e se mostrou essencial para reproduzir a tendência do crescimento da energia de adsorção com o tamanho molecular dos alcoóis, enquanto sua natureza atrativa promoveu a diminuição das distâncias atômicas entre alcoóis e substratos. O estudo de dinâmica molecular mostrou que a configuração de adsorção DFT se mantém apenas em temperaturas próximas de 0 K e que outras configurações são favorecidas a temperaturas mais altas. A presença de outras moléculas de glicerol promove, mediante o aquecimento do sistema, a formação de aglomerados de moléculas ligadas através de interações de hidrogênio, o que estabiliza as moléculas e, provavelmente, retarda seu processo de dessorção. Nos sistemas com maior densidade de moléculas, observou-se, ao final da simulação, a formação de fragmentos CH3OH-CHOH-CH2O- e átomos de H adsorvidos na superfície, indicando a quebra de ligações O-H do grupo hidróxi terminal. / Several researchers have been suggesting the use of glycerol and other alcohols as a feedstock to produce higher value-added goods and electricity through fuel cells. However, the success of these conversion technologies depends on the development of efficient catalysts. In this context, theoretical approaches are useful tools that are able to yield important insights that could not be easily obtained from experiments and are fundamental for the future design of more efficient materials. Hence, in this thesis, we investigated via density functional theory (DFT) the role of surface defects and strain effects on the adsorption of methanol, ethanol and glycerol on defected Pt(111) and Pt3Ni-based surfaces. To improve the description of the adsorbed systems, we added the van der Waals (vdW) correction DFT-D3 to the DFT approach. We also studied through molecular dynamics, employing the ReaxFF potential, the effects of temperature on the glycerol, considering different levels of surface coverage, interacting with the Pt3Ni(111) substrates. Our results show that the glycerol binds through the oxygen from a terminal hidroxi group to top sites of transition-metals (TM) with the carbon chain almost parallel to the surface. The calculations of adsorption energy indicate that glycerol interacts strongly with low-coordinated sites, such as those of surface defects, which can be rationalized through the d-band model. Furthermore, the presence of multiple low-coordinated sites was related with configurations where the glycerol binds to the substrates by two hidroxi groups, the central and a terminal one. However, there is a clear preference of the alcohols to bind on cationic adsorption sites, which indicates that the Coulomb interactions play a major role on the adsorption process of alcohols on TM. Electron density analyzes suggest that the adsorption promotes perturbations in the electronic density of the alcohols, such as a partial displacement of electron density from the C-O and O-H bonds to the region between the molecule and the substrate, which are related with the stretching/weakening of the C-O e O-H, as found in the structural analyzes. The DFT results also show that the addition of the DFT-D3 dispersion correction enhanced the adsorption energies and was essential to reproduce correctly the dependence of the binding energy with the molecule size, while its attractive nature promoted the decrease of the atomic distances between alcohols and substrates. The molecular dynamics showed that the glycerol DFT lowest energy adsorption configuration is maintained for temperatures close to 0 K whereas different configurations are favored in higher temperatures. In the presence of multiple glycerol molecules, the heating of the system promotes the formation of molecular clusters bound through hydrogen interactions, which stabilize the molecules and, probably, delay the desorption process. In the systems with higher molecular density, we found that CH3OH-CHOH-CH2O- fragments and H atoms are formed in the end of the simulation, which indicates that the breaking of O-H bonds from the terminal hidroxi groups is promoted.
|
Page generated in 0.1063 seconds