• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling the constraints on consanguineous marriage when fertility declines

Barakat, Bilal, Basten, Stuart January 2014 (has links) (PDF)
BACKGROUND Consanguinity - or marriage between close blood relatives, in particular first cousins - is widely practised and even socially encouraged in many countries. However, in the face of fertility transition where the number of cousins eligible to marry declines, how might such constraints on consanguinity develop in the future? OBJECTIVE Numerous studies have stated that the practice cannot continue at present levels and in its present form in the face of fertility transition. However, the future impact of fertility transition on availability of cousins to marry has not yet been quantified. METHODS We perform a simulation exercise using past and projected net reproduction rates (NRRs) derived from the UN. We calculate the average number of cousins of the opposite sex as a function of the average number of children, the average probability of an individual having at least one eligible paternal cousin of the opposite sex, and conclude with an examination of constraints on consanguineous marriage in selected countries under different fertility assumptions. RESULTS Current and projected fertility levels in Middle Eastern countries will create challenging constraints on the custom once today's birth cohorts reach marriageable age. CONCLUSIONS Either consanguinity prevalence will diminish significantly, or the institution will be forced to adapt by becoming more coercive in the face of reduced choice or at the expense of other social preferences (such as for an older groom wedding a younger bride). Fertility decline affects prospects for social change not only through its well-known consequences for mothers but also through shaping marriage conditions for the next generation.
2

Function modelling of complex multidisciplinary systems : development of a system state flow diagram methodology for function decomposition of complex multidisciplinary systems

Yildirim, Unal January 2015 (has links)
The complexity of technical systems has increased significantly in order to address evolving customer needs and environmental concerns. From a product development process viewpoint, the pervasive nature of multi-disciplinary systems (i.e. mechanical, electrical, electronic, control, software) has brought some important integration challenges to overcome conventional disciplinary boundaries imposed by discipline specific approaches. This research focuses on functional reasoning, aiming to develop a structured framework based on the System State Flow Diagram (SSFD) for function modelling of complex multidisciplinary systems on a practical and straightforward basis. The framework is developed at two stages. 1) The development of a prototype for the SSFD framework. The proposed SSFD framework are tested and validated through application to selected desktop case studies. 2) Further development and extension of the SSFD framework for the analysis of complex multidisciplinary systems with multiple operation modes and functional requirements. The developed framework is validated on real world case studies collaborated with industrial partners. The main conclusion of this research is that the SSFD framework offers a rigorous and coherent function modelling methodology for the analysis of complex multidisciplinary systems. Further advantages of the SSFD framework is that 1) the effectiveness of the Failure Mode Avoidance (FMA) process can be enhanced by integrating the SSFD framework with relevant tools of the FMA process, and 2) the integration of the SSFD with the SysML systems engineering diagrams is doable, which can promote the take-up of the approach in industry.
3

Function Modelling of Complex Multidisciplinary Systems. Development of a System State Flow Diagram Methodology for Function Decomposition of Complex Multidisciplinary Systems

Yildirim, Unal January 2015 (has links)
The complexity of technical systems has increased significantly in order to address evolving customer needs and environmental concerns. From a product development process viewpoint, the pervasive nature of multi-disciplinary systems (i.e. mechanical, electrical, electronic, control, software) has brought some important integration challenges to overcome conventional disciplinary boundaries imposed by discipline specific approaches. This research focuses on functional reasoning, aiming to develop a structured framework based on the System State Flow Diagram (SSFD) for function modelling of complex multidisciplinary systems on a practical and straightforward basis. The framework is developed at two stages. 1) The development of a prototype for the SSFD framework. The proposed SSFD framework are tested and validated through application to selected desktop case studies. 2) Further development and extension of the SSFD framework for the analysis of complex multidisciplinary systems with multiple operation modes and functional requirements. The developed framework is validated on real world case studies collaborated with industrial partners. The main conclusion of this research is that the SSFD framework offers a rigorous and coherent function modelling methodology for the analysis of complex multidisciplinary systems. Further advantages of the SSFD framework is that 1) the effectiveness of the Failure Mode Avoidance (FMA) process can be enhanced by integrating the SSFD framework with relevant tools of the FMA process, and 2) the integration of the SSFD with the SysML systems engineering diagrams is doable, which can promote the take-up of the approach in industry. / Automotive Research Centre
4

Schémas aux résidus distribués et méthodes à propagation des ondes pour la simulation d’écoulements compressibles diphasiques avec transfert de chaleur et de masse / Residual distribution schemes and wave propagation methods for the simulation of two-phase compressible flows with heat and mass transfer

Carlier, Julien 06 December 2019 (has links)
Ce travail a pour thème la simulation numérique d’écoulements diphasiques dans un contexte industriel. En effet, la simulation d’écoulements diphasiques est un domaine qui présente de nombreux défis, en raison de phénomènes complexes qui surviennent, comme la cavitation et autres transferts entre les phases. En outre, ces écoulements se déroulent généralement dans des géométries complexes rendant difficile une résolution efficiente. Les modèles que nous considérons font partie de la catégorie des modèles à interfaces diffuses et permettent de prendre en compte aisément les différents transferts entre les phases. Cette classe de modèles inclut une hiérarchie de sous-modèles pouvant simuler plus ou moins d’interactions entre les phases. Pour mener à bien cette étude nous avons en premier lieu comparé les modèles diphasiques dits à quatre équations et six équations, en incluant les effets de transfert de masse. Nous avons ensuite choisi de nous concentrer sur le modèle à quatre équations. L’objectif majeur de notre travail a alors été d’étendre les méthodes aux résidus distribués à ce modèle. Dans le contexte des méthodes de résolution numérique, il est courant d’utiliser la forme conservative des équations de bilan. En effet, la résolution sous forme non-conservative conduit à une mauvaise résolution du problème. Cependant, résoudre les équations sous forme non-conservative peut s’avérer plus intéressant d’un point de vue industriel. Dans ce but, nous utilisons une approche développée récemment permettant d’assurer la conservation en résolvant un système sous forme non-conservative, à condition que la forme conservative soit connue. Nous validons ensuite notre méthode et l’appliquons à des problèmes en géométries complexes. Finalement, la dernière partie de notre travail est dédiée à étudier la validité des modèles à interfaces diffuses pour des applications à des problèmes industriels réels. On cherche alors, en utilisant des méthodes de quantification d’incertitude, à obtenir les paramètres rendant nos simulations les plus vraisemblables et cibler les éventuels développements pouvant rendre nos simulations plus réalistes. / The topic of this thesis is the numerical simulation of two-phase flows in an industrial framework. Two-phase flows modelling is a challenging domain to explore, mainly because of the complex phenomena involved, such as cavitation and other transfer processes between phases. Furthermore, these flows occur generally in complex geometries, which makes difficult the development of efficient resolution methods. The models that we consider belong to the class of diffuse interface models, and they allow an easy modelling of transfers between phases. The considered class of models includes a hierarchy of sub-models, which take into account different levels of interactions between phases. To pursue our studies, first we have compared the so-called four-equation and six-equation two-phase flow models, including the effects of mass transfer processes. We have then chosen to focus on the four-equation model. One of the main objective of our work has been to extend residual distribution schemes to this model. In the context of numerical solution methods, it is common to use the conservative form of the balance law. In fact, the solution of the equations under a non-conservative form may lead to a wrong solution to the problem. Nonetheless, solving the equations in non-conservative form may be more interesting from an industrial point of view. To this aim, we employ a recent approach, which allows us to ensure conservation while solving a non-conservative system, at the condition of knowing its conservative form. We then validate our method and apply it to problems with complex geometry. Finally, the last part of our work is dedicated to the evaluation of the validity of the considered diffuse interface model for applications to real industrial problems. By using uncertainty quantification methods, the objective is to get parameters that make our simulations the most plausible, and to target the possible extensions that can make our simulations more realistic.
5

Intrusion detection techniques in wireless local area networks

Gill, Rupinder S. January 2009 (has links)
This research investigates wireless intrusion detection techniques for detecting attacks on IEEE 802.11i Robust Secure Networks (RSNs). Despite using a variety of comprehensive preventative security measures, the RSNs remain vulnerable to a number of attacks. Failure of preventative measures to address all RSN vulnerabilities dictates the need for a comprehensive monitoring capability to detect all attacks on RSNs and also to proactively address potential security vulnerabilities by detecting security policy violations in the WLAN. This research proposes novel wireless intrusion detection techniques to address these monitoring requirements and also studies correlation of the generated alarms across wireless intrusion detection system (WIDS) sensors and the detection techniques themselves for greater reliability and robustness. The specific outcomes of this research are: A comprehensive review of the outstanding vulnerabilities and attacks in IEEE 802.11i RSNs. A comprehensive review of the wireless intrusion detection techniques currently available for detecting attacks on RSNs. Identification of the drawbacks and limitations of the currently available wireless intrusion detection techniques in detecting attacks on RSNs. Development of three novel wireless intrusion detection techniques for detecting RSN attacks and security policy violations in RSNs. Development of algorithms for each novel intrusion detection technique to correlate alarms across distributed sensors of a WIDS. Development of an algorithm for automatic attack scenario detection using cross detection technique correlation. Development of an algorithm to automatically assign priority to the detected attack scenario using cross detection technique correlation.
6

Experimental and modelling studies of corrosion fatigue damage in a linepipe steel

Fatoba, Olusegun Oludare January 2016 (has links)
The work is concerned with the development of a multi-stage corrosion fatigue lifetime model, with emphasis on pitting as a precursor to cracking. The model is based upon the quantitative evaluation of damage during the overall corrosion fatigue process. The fatigue response of as-received API 5L X65 linepipe steel has been investigated in terms of the evolution of damage during pit development, pit-to-crack transition and crack propagation. Micro-potentiostatic polarisation was conducted to evaluate role of stress on pit development. Crack growth rate measurements were conducted on pre-pitted specimens, which were tested in air and brine, to evaluate the initiation and propagation behaviour of cracks emanating from artificial pits. Finite element analysis was undertaken to evaluate the stress and strain distribution associated with the pits. A cellular automata finite element model was also developed for predicting corrosion fatigue damage. Pit growth rate was enhanced under stress. It was considered that the strain localisation effect of the pit facilitated strain-assisted dissolution. In air, cracks initiated predominantly from the pit mouth. FEA results indicated that this was due to localisation of strain towards the pit mouth. In corrosion fatigue, cracks tended to initiate at the pit base at low stress and at the pit mouth at higher stresses. Crack initiation lifetimes were shorter in the aggressive environment compared to air and the effect of the environment on crack initiation lifetime was lower at higher stress levels. Crack initiation lifetime for double pits generally decreased with decreasing pit-to-pit separation distance. The microstructure was observed to influence crack growth behaviour in air particularly in the early stages when cracks were short. The acceleration and retardation in crack growth were attributed to the resistance of grain boundaries to crack advance. Cracks sometimes arrested at these barriers and became non-propagating. Introduction of the environment for a short period appear to eliminate the resistance of the microstructural barriers thus promoting re-propagation of the previously arrested crack. The continued crack propagation after the removal of the environment suggests that the influence of the environment is more important in the early stages of crack growth. Crack growth rates were higher in the aggressive environment than in air. The degree of environmental enhancement of crack growth was found to be greater at lower stress levels and at short crack lengths. Oxide-induced crack closure and crack coalescence were two mechanisms that also affected crack growth behaviour.2-D cellular automata finite element simulation results, with and without stress, show good agreement agreed with experiments i.e. pit depth and pit aspect ratio increase with time. Results from 3-D cellular automata simulations of pits are also consistent with experiments. Fatigue lifetimes were significantly shorter (i) in the brine environment than in air and (ii) for specimens with double pits compared to single pits of similar depth. Fatigue strength in air was found to decrease with increasing pit depth. Corrosion fatigue lifetimes predicted based upon the developed model showed good agreement with the experimental lifetimes.

Page generated in 0.1474 seconds