Spelling suggestions: "subject:"transitionmetal"" "subject:"transition.metal""
41 |
Transition metal catalysed photo-induced oxidative C-H bond functionalization and water oxidationTo, Wai-pong, 杜偉邦 January 2012 (has links)
A series of cyclometalated gold(III) complexes with N-heterocyclic carbine (NHC) or alkynyl as auxiliary ligand were synthesized and characterized. Complexes [AuIII(R1
–C^N^C)(NHC)](OTf) and [AuIII(C^N^C)(C≡CR2)] (HC^N^CH = 2,6-di(naphthalene-2-yl)pyridine; R1 = H or 4-methoxyphenyl; R2 =aryl) are emissive in solution at room temperature with quantum yields in the range of 0.65–11.4% and lifetimes ranging from 98 to 506 s. [AuIII(4-(4-OMePh)–C^N^C)(NHC)](OTf) showed prominent photochemical properties. This complex effectively catalyses photo-induced oxidation of secondary amines (to the corresponding imines) and -functionalization of tertiary amines in good to excellent yields; it also acts as a photosensitizer for hydrogen generation in a water/acetonitrile mixture, producing more than 350 turnovers of hydrogen after 4 hours of irradiation.
Palladium(II) meso-tetrakis(pentafluorophenyl)porphyrin was found to be an efficient and robust catalyst for the photo-induced oxidative C–H bond functionalization reactions. Several kinds of -functionalized tertiary amines were obtained in good to excellent yields by irradiating a mixture of palladium(II) catalyst, corresponding tertiary amine and nucleophile under aerobic conditions. The nucleophiles for these reactions include cyanide, nitromethane, dimethyl malonate, diethyl phosphite and acetone. Two examples of novel intramolecularly cyclized amines were also described. Comparison of the UV-vis absorption spectra before and after reaction indicated that the palladium catalyst was highly robust. The practical potential of this catalyst was shown by the success in reactions at a low catalyst loading and on a large scale. The palladium(II) catalyst could also sensitize photo-induced oxidation of sulfide to sulfoxide and photo-induced hydrogen production in a water/acetonitrile mixture with up to 240 turnovers.
[FeIII(L-N4Me2)Cl2][FeCl4] (L-N4Me2 = N,N’-dimethyl-2,11-diaza[3,3] (2,6)pyridinophane) was demonstrated to be an active catalyst for water oxidation. When cerium ammonium nitrate (CAN) was used as the oxidant, the iron(III) catalyst oxidized water to oxygen with up to 93 turnovers after 30 minutes in 0.1 M nitric acid, whereas changing the oxidant to sodium periodate (NaIO4) resulted in only 44 turnovers of oxygen after 30 minutes. The mechanism of the reaction was explored by high resolution electrospray ionization mass spectrometry (ESI-MS), 18O labeling, UV-vis absorption spectroscopy, kinetic plots and DFT calculations. In the case of using CAN, an FeIV-oxo species was detected by ESI-MS and UV-vis absorption spectroscopy. The rate of oxygen evolution was found to be linearly dependent on both concentrations of catalyst and oxidant. 18O labeling studies confirmed that the origin of oxo ligands was from water and was irrespective of the choice of oxidant. This reaction was proposed to involve a coupling between an FeIV-oxo species and a hydroxocerium(IV) radical. In the case of using NaIO4, an FeV-dioxo species was detected by ESI-MS as a major species, and a small amount of FeIV-oxo species was detected by UV-vis absorption spectroscopy. As the rate of oxygen evolution was found to be linearly dependent on the concentration of catalyst only, the reaction was proposed to involve a cis-FeV-dioxo species. DFT calculations showed that the cis-FeV-dioxo species was capable of oxidizing water to oxygen through the formation of an [FeIII(L-N4Me2)(OO?)(OH)]+ intermediate. / published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
42 |
Electronic transitions of transition metal monoboridesNg, Yuk-wai, 吳育煒 January 2014 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
43 |
Transition metal complexes of expanded porphyrinsTomat, Elisa 28 August 2008 (has links)
Not available / text
|
44 |
Studies of the role of ligands in determining the structures of polynuclear metal compoundsAdatia, T. January 1988 (has links)
Full X-ray structure analyses ot sixteen .etal cluster compounds of nuclearity 3 to 11 have been carried out to investigate to what extent the attached surface ligands govern the structure in the solid state and how this relates to the chemistry of the cluster in solution. The structure of the tetranuclear cluster [AgRu,(CO),(CzBut)(PPh,)] has completed a series of related clusters [MRu,(CO),(CzBut)(PPh,)] [M a Cu, Ag or Au]. This is only the second example of a complete series of Group IB cluster analogues and confirms earlier evidence that the bonds fro. gold are different in character to those trom silver and copper. The structures of the copper clusters [Cu,Ru.(~,-H),(CO)'Z{P(C6H'1)'}Z] and [Cu,Ru.(~,-H)Z (CO)tZ {P(CHMel ) l} l ] compared to the reported structure [Cu,Ru"(~J-H)z(CO)tZ(PPhl)l] indicate that the 'bulk' of the organophosphine groups is a major factor in determining the type of metal geometry adopted by this type of compound in the solid state. Comparison of the structural results obtained for the hexanuclear clusters [M,Ru,,(CO).,(PPh,),] [M a Cu or Ag] to those reported for the hydrido analogues [MlRu.(~,-H)z(CO)'l(PPh')l] have shown that small changes in the surface ligand set can have marked effects on the metal geometry in the solid state, providing further evidence that the energy differences between the various structural types are small for heteronuclear clusters containing Group IB metal atoms. The X-ray structure analyses of [AulRu.(~-H)(~,-H)(CO)ll{~-Ph,PCH=CHPPhz}] and [Au,Ru,,(~-H)(CO),,{~-PhzPCH,PPhz}(PPhJ)] have enabled the correlation of earlier structural data of related hexanuclear and heptanuclear mixed-metal clusters to account tor the marked differences between the structures of gold-ruthenium clusters with monodentate organophosphines, -compared to those with bidentate phosphine ligands. The X-ray structures ot the isomers [Os,Hz(CCHOEt)(CO).l and [Os.H,(HCCOEt) (CO),] provide a rare exaaple of cluster isomers differing only in the nature of the organo ligands. The structures of the high nuclearity hydrido clusters [Os.HZ(CO)'7- P(OMe),]' [Os7HZ (CO)u], and [Os7HZ (CO)..{MeCaCMe}] have shown nove1 metal fraaeworks, supporting previous observations that when hydrido ligands are present, osmium cluster geo.etries can often be unpredictable in the solid state. The structural characterisation of the large hydrido cluster monoanions [HsOs,o(CO),.]- and [HOs"C(CO)Z7]- have provided evidence for the presence of intersU Ual hydrido ligands. Comparison of these results to those reported for related compounds supports the view that in some cases. interstitial ligands become important in preventing surface ligand. overcrowding.
|
45 |
Transition metal complexes of expanded porphyrinsTomat, Elisa, 1977- 18 August 2011 (has links)
Not available / text
|
46 |
X-RAY PHOTOELECTRON SPECTRA OF TRANSITION METAL COMPLEXES OF ARYLDIAZO, NITROSYL, AND RELATED LIGANDSBrant, Patrick, 1950- January 1977 (has links)
No description available.
|
47 |
Polynuclear transition metal complexes of amino- and iminoalcoholsMarabella, Charles Peter 08 1900 (has links)
No description available.
|
48 |
Structures and magnetic properties of polynuclear complexes with aminoalcohols and iminoalcohols as ligandsFujita, Etsuko 12 1900 (has links)
No description available.
|
49 |
Bonding to transition metal atoms in low oxidation statesLoades, Stephen David January 1992 (has links)
No description available.
|
50 |
Preparation and characterisation of rhodium complexes with potentially bidentate P-N and P-O ligandsManzi, Lucia January 2000 (has links)
No description available.
|
Page generated in 0.0767 seconds