Spelling suggestions: "subject:"1translation models"" "subject:"atranslation models""
1 |
La traduction automatique statistique factorisée : une application à la paire de langues français - roumain / Factored phrase based statistical machine translation : a French - Romanian applicationLaporte, Elena-Mirabela 13 June 2014 (has links)
Un premier objectif de cette thèse est la constitution de ressources linguistiques pour un système de traduction automatique statistique factorisée français - roumain. Un deuxième objectif est l’étude de l’impact des informations linguistiques exploitées dans le processus d’alignement lexical et de traduction. Cette étude est motivée, d’une part, par le manque de systèmes de traduction automatique pour la paire de langues étudiées et, d’autre part, par le nombre important d’erreurs générées par les systèmes de traduction automatique actuels. Les ressources linguistiques requises par ce système sont des corpus parallèles alignés au niveau propositionnel et lexical. Ces corpus sont également segmentés lexicalement, lemmatisés et étiquetés au niveau morphosyntaxique. / Our first aim is to build linguistic resources for a French - Romanian factored phrase - based statistical machine translation system. Our second aim is to study the impact of exploited linguistic information in the lexical alignment and translation process. On the one hand, this study is motivated by the lack of such systems for the studied languages. On the other hand, it is motivated by the high number of errors provided by the current machine translation systems. The linguistic resources required by the system are tokenized, lemmatized, tagged, word, and sentence - aligned parallel corpora.
|
2 |
Novel statistical approaches to text classification, machine translation and computer-assisted translationCivera Saiz, Jorge 04 July 2008 (has links)
Esta tesis presenta diversas contribuciones en los campos de la
clasificación automática de texto, traducción automática y traducción
asistida por ordenador bajo el marco estadístico.
En clasificación automática de texto, se propone una nueva aplicación
llamada clasificación de texto bilingüe junto con una serie de modelos
orientados a capturar dicha información bilingüe. Con tal fin se
presentan dos aproximaciones a esta aplicación; la primera de ellas se
basa en una asunción naive que contempla la independencia entre las
dos lenguas involucradas, mientras que la segunda, más sofisticada,
considera la existencia de una correlación entre palabras en
diferentes lenguas. La primera aproximación dió lugar al desarrollo de
cinco modelos basados en modelos de unigrama y modelos de n-gramas
suavizados. Estos modelos fueron evaluados en tres tareas de
complejidad creciente, siendo la más compleja de estas tareas
analizada desde el punto de vista de un sistema de ayuda a la
indexación de documentos. La segunda aproximación se caracteriza por
modelos de traducción capaces de capturar correlación entre palabras
en diferentes lenguas. En nuestro caso, el modelo de traducción
elegido fue el modelo M1 junto con un modelo de unigramas. Este
modelo fue evaluado en dos de las tareas más simples superando la
aproximación naive, que asume la independencia entre palabras en
differentes lenguas procedentes de textos bilingües.
En traducción automática, los modelos estadísticos de traducción
basados en palabras M1, M2 y HMM son extendidos bajo el marco de la
modelización mediante mixturas, con el objetivo de definir modelos de
traducción dependientes del contexto. Asimismo se extiende un
algoritmo iterativo de búsqueda basado en programación dinámica,
originalmente diseñado para el modelo M2, para el caso de mixturas de
modelos M2. Este algoritmo de búsqueda n / Civera Saiz, J. (2008). Novel statistical approaches to text classification, machine translation and computer-assisted translation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2502
|
Page generated in 0.0861 seconds