• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Translocation of proteins into and across the bacterial and mitochondrial inner membranes

Calado Botelho, Salomé January 2012 (has links)
Translocons are dynamic protein complexes with the ability to respond to specific signals and to transport polypeptides between two distinct environments. The Sec-type translocons are examples of such machineries that can interconvert between a pore forming conformation that translocates proteins across the membrane, and a channel-like conformation that integrates proteins into the membrane by lateral opening. This thesis aims to identify the signals encoded in the amino acid sequence of the translocating polypeptides that trigger the translocon to release defined segments into the membrane. The selected systems are the SecYEG translocon and the TIM23 complex responsible for inserting proteins into the bacterial and the mitochondrial inner membrane, respectively. These two translocons have been challenged in vivo with designed polypeptide segments and their insertion efficiency into the membrane was measured. This allowed identification of the sequence requirements that govern SecYEG- and TIM23-mediated membrane integration. For these two systems, “biological” hydrophobicity scales have been determined, giving the contributions of each of the 20 amino acids to the overall free energy of insertion of a transmembrane segment into the membrane. A closer analysis of the mitochondrial system has made it possible to additionally investigate the process of membrane dislocation mediated by the m-AAA protease. The threshold hydrophobicity required for a transmembrane segment to remain in the mitochondrial inner membrane after TIM23-mediated integration depends on whether the segment will be further acted upon by the m-AAA protease. Finally, an experimental approach is presented to distinguish between different protein sorting pathways at the level of the TIM23 complex, i.e., conservative sorting vs. stop-transfer pathways. The results suggest a connection between the metabolic state of the cell and the import of proteins into the mitochondria. / <p>At the time of doctoral defence the following papers were unpublished and had a status as follows: Paper nr. 1: Manuscript; Paper nr. 4: Manuscript</p>
2

Computational studies of transmembrane helix insertion and association

Chetwynd, Alan January 2011 (has links)
Membrane proteins perform a variety of functions essential for the viability of the cell, including transport and signalling across the membrane. Most membrane proteins are formed from bundles of transmembrane helices. In this thesis molecular dynamics simulations have been used to investigate helix insertion into bilayers and helix association within bilayers. The potentials of mean force for the insertion of helices derived from the cystic fibrosis transmembrane conductance regulator into lipid bilayers were calculated using coarse-grained molecular dynamics simulations. The results showed that the insertion free energy increased with helix length and bilayer hydrophobic width. The insertion free energies obtained were significantly larger than comparable quantities obtained from translocon- mediated insertion experiments, consistent with a variety of previous studies. The implications of this observation for the interpretation of in vivo translocon-mediated insertion experiments, and the function of the translocon, are discussed. Coarse-grained and atomistic molecular dynamics simulations of the transmembrane region of the receptor tyrosine kinase EphA1 suggested that the transmembrane helix dimer was most stable when interacting via the glycine zipper motif, in agreement with a structure obtained by NMR spectroscopy. Coarse-grained simulations of the transmembrane region of EphA2 suggested that the dimer has two stable orientations, interacting via a glycine zipper or a heptad motif. Both structures showed right-handed dimers, although an NMR structure of the transmembrane region of EphA2 shows a left-handed dimer interacting via the heptad motif. Both structures obtained from coarse-grained simulations proved unstable when simulated at an atomistic level of detail. The potentials of mean force for dissociating the EphA1 and EphA2 dimers were calcu- lated using coarse-grained molecular dynamics calculations. Convergence of the detailed structure of the profiles was not conclusively shown, although association free energies cal- culated from the profiles were consistent over a variety of simulation times. The association free energies were slightly larger than experimental values obtained for comparable sys- tems, but consistent with similar computational calculations previously reported. However, direct comparisons are difficult owing to the influence of environmental factors on reported association free energies. The potential of mean force profiles showed that the interaction via the glycine zipper motif for EphA1 was significantly more stable than any other confor- mation. For EphA2 the potential of mean force profiles suggested that interaction via the glycine zipper and heptad motifs both provided stable or metastable conformations, with the interaction via the glycine zipper motif probably at least as stable as that via the heptad motif.
3

Studies on the Conformation of Transmembrane Polypeptides in Membrane Proteins

Cassel, Marika January 2005 (has links)
<p>The major aim of the studies that this thesis is based on has been to better define the topological determinants of the formation of so-called helical hairpins during membrane protein assembly in the ER membrane.</p><p>The helical hairpin is a basic folding unit in membrane proteins. It is composed of two closely spaced transmembrane helices with a short connecting loop and it is believed to be inserted into the membrane as one compact unit. It is becoming increasingly clear that the helical hairpin is a very common structural element in membrane proteins and a detailed understanding of its properties is of central importance.</p><p>We demonstrate that the efficiency of formation of helical hairpins depends both on the overall length of the hydrophobic segment, on the amino acids flanking the transmembrane segment, and on the identity of the central, potentially turn-forming residues. We also show that interhelical hydrogen bonds between pairs of Asn or Asp residues can induce helical hairpin formation.</p><p>A detailed topology mapping is also reported for the <i>Escherichia coli </i>inner membrane chloride channel YadQ, a protein for which the X-ray structure is known. Our results provide a critical test of the reporter fusion approach and offer new insights into the YadQ folding pathway.</p><p>In summary, the results present in this thesis have increased our understanding of the determinants of membrane protein topology and structure. Furthermore, the information obtained can be used to improve current models for predictions of membrane protein topology.</p>
4

Studies on the Conformation of Transmembrane Polypeptides in Membrane Proteins

Cassel, Marika January 2005 (has links)
The major aim of the studies that this thesis is based on has been to better define the topological determinants of the formation of so-called helical hairpins during membrane protein assembly in the ER membrane. The helical hairpin is a basic folding unit in membrane proteins. It is composed of two closely spaced transmembrane helices with a short connecting loop and it is believed to be inserted into the membrane as one compact unit. It is becoming increasingly clear that the helical hairpin is a very common structural element in membrane proteins and a detailed understanding of its properties is of central importance. We demonstrate that the efficiency of formation of helical hairpins depends both on the overall length of the hydrophobic segment, on the amino acids flanking the transmembrane segment, and on the identity of the central, potentially turn-forming residues. We also show that interhelical hydrogen bonds between pairs of Asn or Asp residues can induce helical hairpin formation. A detailed topology mapping is also reported for the Escherichia coli inner membrane chloride channel YadQ, a protein for which the X-ray structure is known. Our results provide a critical test of the reporter fusion approach and offer new insights into the YadQ folding pathway. In summary, the results present in this thesis have increased our understanding of the determinants of membrane protein topology and structure. Furthermore, the information obtained can be used to improve current models for predictions of membrane protein topology.
5

Towards a complete sequence homology concept: Limitations and applications

Wong, Wing-Cheong 14 December 2011 (has links) (PDF)
Historically, the paradigm of similarity of protein sequences implying common structure, function and ancestry was generalized based on studies of globular domains. The implications of sequence similarity among non-globular protein segments have not been studied to the same extent; nevertheless, homology considerations are silently extended for them. This appears especially detrimental in the case of transmembrane helices (TMs) and signal peptides (SPs) where sequence similarity is necessarily a consequence of physical requirements rather than common ancestry. Since the matching of SPs/TMs creates the illusion of matching hydrophobic cores, the inclusion of SPs/TMs into domain models can give rise to wrong annotations. More than 1001 domains among the 10,340 models of Pfam release 23 and 18 domains of SMART version 6 (out of 809) contain SP/TM regions. As expected, fragment mode HMM searches generate promiscuous hits limited to solely the SP/TM part among clearly unrelated proteins. More worryingly, this work shows explicit examples that the scores of clearly false-positive hits, even in globalmode searches, can be elevated into the significance range just by matching the hydrophobic runs. In the PIR iProClass database v3.74 using conservative criteria, this study finds that at least between 2.1% and 13.6% of its annotated Pfam hits appear unjustified for a set of validated domain models. Thus, false positive domain hits enforced by SP/TM regions can lead to dramatic annotation errors where the hit has nothing in common with the problematic domain model except the SP/TM region itself. A workflow of flagging problematic hits arising from SP/TM-containing models for critical reconsideration by annotation users is provided. While E-value guided extrapolation of protein domain annotation from libraries such as Pfam with the HMMER suite is indispensable for hypothesizing about the function of experimentally uncharacterized protein sequences, it can also complicate the annotation problem. In HMMER2, the E-value is computed from the score via a logistic function or via a domain model-specific extreme value distribution (EVD); the lower of the two is returned as E-value for the domain hit in the query sequence. We demonstrated that, for thousands of domain models, this treatment results in switching from the EVD to the statistical model with the logistic function when scores grow (for Pfam release 23, 99% in the global mode and 75% in the fragment mode). If the score corresponding to the breakpoint results in an E-value above a user-defined threshold (e.g., 0.1), a critical score region with conflicting E-values from the logistic function (below the threshold) and from EVD (above the threshold) does exist. Thus, this switch will affect E-value guided annotation decisions in an automated mode. To emphasize, switching in the fragment mode is of no practical relevance since it occurs only at E-values far below 0.1. Unfortunately, a critical score region does exist for 185 domain models in the hmmpfam and 1748 domain models in the hmmsearch global-search mode. For 145 out the respective 185 models, the critical score region is indeed populated by actual sequences. In total, 24.4% of their hits have a logistic function-derived E-value<0.1 when the EVD provides an E-value>0.1. Examples of false annotations are provided and the appropriateness of a logistic function as alternative to the EVD is critically discussed. This work shows that misguided E-value computation coupled with non-globular regions embedded in domain model library not only causes annotation errors in public databases but also limits the extrapolation power of protein function prediction tasks. So far, the preceding work has demonstrated that sequence homology considerations widely used to transfer functional annotation to uncharacterized protein sequences require special precautions in the case of non-globular sequence segments including membrane-spanning stretches from non-polar residues. We found that there are two types of transmembrane helices (TMs) in membrane-associated proteins. On the one hand, there are so-called simple TMs with elevated hydrophobicity, low sequence complexity and extraordinary enrichment in long aliphatic residues. They merely serve as membrane-anchoring device. In contrast, so-called complex TMs have lower hydrophobicity, higher sequence complexity and some functional residues. These TMs have additional roles besides membrane anchoring such as intramembrane complex formation, ligand binding or a catalytic role. Simple and complex TMs can occur both in single- and multi-membrane-spanning proteins essentially in any type of topology. Whereas simple TMs have the potential to confuse searches for sequence homologues and to generate unrelated hits with seemingly convincing statistical significance, complex TMs contain essential evolutionary information. For extending the homologyconcept onto membrane proteins, we provide a necessary quantitative criterion to distinguish simple TMs in query sequences prior to their usage in homology searches based on assessment of hydrophobicity and sequence complexity of the TM sequence segments. Theoretical insights from this work were applied to problems of function prediction for specific uncharacterized gene/protein sequences (for example, APMAP and ARXES) and for the functional classification of TM-containing proteins.
6

Marginally hydrophobic transmembrane α-helices shaping membrane protein folding

de Marothy, Tuuli Minttu Virkki January 2014 (has links)
Most membrane proteins are inserted into the membrane co-translationally utilizing the translocon, which allows a sufficiently long and hydrophobic stretch of amino acids to partition into the membrane. However, X-ray structures of membrane proteins have revealed that some transmembrane helices (TMHs) are surprisingly hydrophilic. These marginally hydrophobic transmembrane helices (mTMH) are not recognized as TMHs by the translocon in the absence of local sequence context. We have studied three native mTMHs, which were previously shown to depend on a subsequent TMH for membrane insertion. Their recognition was not due to specific interactions. Instead, the presence of basic amino acids in their cytoplasmic loop allowed membrane insertion of one of them. In the other two, basic residues are not sufficient unless followed by another, hydrophobic TMH. Post-insertional repositioning are another way to bring hydrophilic residues into the membrane. We show how four long TMHs with hydrophilic residues seen in X-ray structures, are initially inserted as much shorter membrane-embedded segments. Tilting is thus induced after membrane-insertion, probably through tertiary packing interactions within the protein. Aquaporin 1 illustrates how a mTMH can shape membrane protein folding and how repositioning can be important in post-insertional folding. It initially adopts a four-helical intermediate, where mTMH2 and TMH4 are not inserted into the membrane. Consequently, TMH3 is inserted in an inverted orientation. The final conformation with six TMHs is formed by TMH2 and 4 entering the membrane and TMH3 rotating 180°. Based on experimental and computational results, we propose a mechanism for the initial step in the folding of AQP1: A shift of TMH3 out from membrane core allows the preceding regions to enter the membrane, which provides flexibility for TMH3 to re-insert in its correct orientation. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.</p>
7

Molecular Dynamics Simulation Of Transmembrane Helices And Analysis Of Their Packing In Integral Membrane Proteins

Iyer, Lakshmanan K 09 1900 (has links) (PDF)
No description available.
8

Towards a complete sequence homology concept: Limitations and applications

Wong, Wing-Cheong 11 August 2011 (has links)
Historically, the paradigm of similarity of protein sequences implying common structure, function and ancestry was generalized based on studies of globular domains. The implications of sequence similarity among non-globular protein segments have not been studied to the same extent; nevertheless, homology considerations are silently extended for them. This appears especially detrimental in the case of transmembrane helices (TMs) and signal peptides (SPs) where sequence similarity is necessarily a consequence of physical requirements rather than common ancestry. Since the matching of SPs/TMs creates the illusion of matching hydrophobic cores, the inclusion of SPs/TMs into domain models can give rise to wrong annotations. More than 1001 domains among the 10,340 models of Pfam release 23 and 18 domains of SMART version 6 (out of 809) contain SP/TM regions. As expected, fragment mode HMM searches generate promiscuous hits limited to solely the SP/TM part among clearly unrelated proteins. More worryingly, this work shows explicit examples that the scores of clearly false-positive hits, even in globalmode searches, can be elevated into the significance range just by matching the hydrophobic runs. In the PIR iProClass database v3.74 using conservative criteria, this study finds that at least between 2.1% and 13.6% of its annotated Pfam hits appear unjustified for a set of validated domain models. Thus, false positive domain hits enforced by SP/TM regions can lead to dramatic annotation errors where the hit has nothing in common with the problematic domain model except the SP/TM region itself. A workflow of flagging problematic hits arising from SP/TM-containing models for critical reconsideration by annotation users is provided. While E-value guided extrapolation of protein domain annotation from libraries such as Pfam with the HMMER suite is indispensable for hypothesizing about the function of experimentally uncharacterized protein sequences, it can also complicate the annotation problem. In HMMER2, the E-value is computed from the score via a logistic function or via a domain model-specific extreme value distribution (EVD); the lower of the two is returned as E-value for the domain hit in the query sequence. We demonstrated that, for thousands of domain models, this treatment results in switching from the EVD to the statistical model with the logistic function when scores grow (for Pfam release 23, 99% in the global mode and 75% in the fragment mode). If the score corresponding to the breakpoint results in an E-value above a user-defined threshold (e.g., 0.1), a critical score region with conflicting E-values from the logistic function (below the threshold) and from EVD (above the threshold) does exist. Thus, this switch will affect E-value guided annotation decisions in an automated mode. To emphasize, switching in the fragment mode is of no practical relevance since it occurs only at E-values far below 0.1. Unfortunately, a critical score region does exist for 185 domain models in the hmmpfam and 1748 domain models in the hmmsearch global-search mode. For 145 out the respective 185 models, the critical score region is indeed populated by actual sequences. In total, 24.4% of their hits have a logistic function-derived E-value<0.1 when the EVD provides an E-value>0.1. Examples of false annotations are provided and the appropriateness of a logistic function as alternative to the EVD is critically discussed. This work shows that misguided E-value computation coupled with non-globular regions embedded in domain model library not only causes annotation errors in public databases but also limits the extrapolation power of protein function prediction tasks. So far, the preceding work has demonstrated that sequence homology considerations widely used to transfer functional annotation to uncharacterized protein sequences require special precautions in the case of non-globular sequence segments including membrane-spanning stretches from non-polar residues. We found that there are two types of transmembrane helices (TMs) in membrane-associated proteins. On the one hand, there are so-called simple TMs with elevated hydrophobicity, low sequence complexity and extraordinary enrichment in long aliphatic residues. They merely serve as membrane-anchoring device. In contrast, so-called complex TMs have lower hydrophobicity, higher sequence complexity and some functional residues. These TMs have additional roles besides membrane anchoring such as intramembrane complex formation, ligand binding or a catalytic role. Simple and complex TMs can occur both in single- and multi-membrane-spanning proteins essentially in any type of topology. Whereas simple TMs have the potential to confuse searches for sequence homologues and to generate unrelated hits with seemingly convincing statistical significance, complex TMs contain essential evolutionary information. For extending the homologyconcept onto membrane proteins, we provide a necessary quantitative criterion to distinguish simple TMs in query sequences prior to their usage in homology searches based on assessment of hydrophobicity and sequence complexity of the TM sequence segments. Theoretical insights from this work were applied to problems of function prediction for specific uncharacterized gene/protein sequences (for example, APMAP and ARXES) and for the functional classification of TM-containing proteins.

Page generated in 0.0447 seconds