• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 64
  • 15
  • 12
  • 9
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 260
  • 260
  • 44
  • 44
  • 41
  • 39
  • 38
  • 31
  • 31
  • 29
  • 26
  • 26
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Full-space conformal mapping for the calculation of the parameters of overhead transmission lines and underground cables

Smith Rodriguez, Edison Manuel 13 September 2016 (has links)
This thesis presents a method to obtain the per-unit-length electrical parameters of a given overhead transmission line or underground cable in an unbounded space considering the effect of the ground. This is achieved using a two-dimensional conformal mapping technique, which consists of a modified bilinear transformation to map a semi-open half-space problem into a unit circle. The Helmholtz equations describing the quasi-stationary approximation for the electromagnetic field behaviour are solved using finite element method, with the aid of commonly used commercial software program, COMSOL Multiphysics. The per-unit-length resistance, inductance and capacitance are calculated using the proposed mapping method, the truncation of the original space method and then compared with the analytical solution obtained from Carson's approximation for the overhead lines and Wedepohl's formulation for the underground cables. / October 2016
32

Synchrophasor based method for computing the Thevenin equivalent impedance seen by a concentrated wind farm region

Kowley, Puja Ajay 04 November 2010 (has links)
Transmission line reactance is an important parameter in carrying out stability studies. The model proposed here utilizes available real time synchrophasor data and information about the generation in the ERCOT grid to determine the Thevenin equivalent reactance of a line. Synchrophasors provide the advantage of synchronized measurements of phase angles which are essential in determining the transmission line reactance. This thesis provides the results of applying this model to estimate the Thevenin equivalent line reactance between McDonald Observatory in West Texas and The University of Texas at Austin. / text
33

Behavior of Periodic Coupled Microstrip Resonators

Wimberley, Jack Timpson January 2011 (has links)
Thesis advisor: Krzysztof Kempa / The resonant modes of a sequence of periodically spaced microstrip resonators is studied. The system is analyzed as transmission line with periodic capacitive gaps, as a waveguide with apertures via normal mode expansion, and through a derivation of the static fields in the gap between two microstrip resonators via conformal mapping. FDTD simulations are also performed to numerically calculate the resonant modes of the sequence and also its absorption spectrum when it contains a lossy dielectric. It is found, as expected, that when the gap size is large, the microstrip resonators are uncoupled and there resonant modes are unperturbed. As the gap size narrows, the resonators become strongly coupled, and changing boundary conditions perturb the resonant modes upwards in frequency. Moreover, an additional resonant mode is observed that does not correspond to any uncoupled mode. / Thesis (BS) — Boston College, 2011. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: College Honors Program. / Discipline: Physics Honors Program. / Discipline: Physics.
34

Multiple resonant multiconductor transmission line resonator design using circulant block matrix algebra

Tadanki, Sasidhar 02 May 2018 (has links)
The purpose of this dissertation is to provide a theoretical model to design RF coils using multiconductor transmission line (MTL) structures for MRI applications. In this research, an MTL structure is represented as a multiport network using its port admittance matrix. Resonant conditions and closed-form solutions for different port resonant modes are calculated by solving the eigenvalue problem of port admittance matrix using block matrix algebra. A mathematical proof to show that the solution of the characteristic equation of the port admittance matrix is equivalent to solving the source side input impedance is presented. The proof is derived by writing the transmission chain parameter matrix of an MTL structure, and mathematically manipulating the chain parameter matrix to produce a solution to the characteristic equation of the port admittance matrix. A port admittance matrix can be formulated to take one of the forms depending on the type of MTL structure: a circulant matrix, or a circulant block matrix (CB), or a block circulant circulant block matrix (BCCB). A circulant matrix can be diagonalized by a simple Fourier matrix, and a BCCB matrix can be diagonalized by using matrices formed from Kronecker products of Fourier matrices. For a CB matrix, instead of diagonalizing to compute the eigenvalues, a powerful technique called “reduced dimension method� can be used. In the reduced dimension method, the eigenvalues of a circulant block matrix are computed as a set of the eigenvalues of matrices of reduced dimension. The required reduced dimension matrices are created using a combination of the polynomial representor of a circulant matrix and a permutation matrix. A detailed mathematical formulation of the reduced dimension method is presented in this thesis. With the application of the reduced dimension method for a 2n+1 MTL structure, the computation of eigenvalues for a 4n X 4n port admittance matrix is simplified to the computation of eigenvalues of 2n matrices of size 2 X 2. In addition to reduced computations, the model also facilitates analytical formulations for coil resonant conditions. To demonstrate the effectiveness of the proposed methods (2n port model and reduced dimension method), a two-step approach was adopted. First, a standard published RF coil was analyzed using the proposed models. The obtained resonant conditions are then compared with the published values and are verified by full-wave numerical simulations. Second, two new dual tuned coils, a surface coil design using the 2n port model, and a volume coil design using the reduced dimensions method are proposed, constructed, and bench tested. Their validation was carried out by employing 3D EM simulations as well as undertaking MR imaging on clinical scanners. Imaging experiments were conducted on phantoms, and the investigations indicate that the RF coils achieve good performance characteristics and a high signal-to-noise ratio in the regions of interest.
35

Grounding of a 230 kV Transmission line over a Limestone Ridge : A case study in Lao P.D.R

Grubbström, Emma January 2011 (has links)
This thesis is a case study of a 230 kV transmission line in Lao P.D.R. Grounding of electrical systems is essential for safety and reliability of the system. Several standards are developed for designing a grounding system when building new facilities but it is harder to find references when it is an expansion of an old system or when the area for grounding is inferior. The transmission line is routed over a high resistive limestone ridge, where the requirements from the design standard can not be fulfilled. During normal conditions, each tower can be properly grounded to earth with ground electrodes, but in this case the resistivity of the solid rock is too high. By studying different shield wires of different materials and improve the down lead conductor in each side of the mountain, a suitable solution can be found. The importance of grounding, general description of grounding techniques and the risks for human and equipment due to an electrical fault is also presented in this thesis.
36

Development of Measurement-based Time-domain Models and its Application to Wafer Level Packaging

Kim, Woopoung 02 July 2004 (has links)
In today's semiconductor-based computer and communication technology, system performance is determined primarily by two factors, namely on-chip and off-chip operating frequency. In this dissertation, time-domain measurement-based methods that enable gigabit data transmission in both the IC and package have been proposed using Time-Domain Reflectometry (TDR) equipment. For the evaluation of the time-domain measurement-based method, a wafer level package test vehicle was designed, fabricated and characterized using the proposed measurement-based methods. Electrical issues associated with gigabit data transmission using the wafer-level package test vehicle were investigated. The test vehicle consisted of two board transmission lines, one silicon transmission line, and solder bumps with 50um diameter and 100um pitch. In this dissertation, 1) the frequency-dependent characteristic impedance and propagation constant of the transmission lines were extracted from TDR measurements. 2) Non-physical RLGC models for transmission lines were developed from the transient behavior for the simulation of the extracted characteristic impedance and propagation constant. 3) the solder bumps with 50um diameter and 100um pitch were analytically modeled. Then, the effect of the assembled wafer-level package, silicon substrate and board material, and material interfaces on gigabit data transmission were discussed using the wafer-level package test vehicle. Finally, design recommendations for the wafer-level package on integrated board were proposed for gigabit data transmission in both the IC and package.
37

An Analysis of the Magnetic Field of Transmission Lines and its Suppression Approaches

Su, Feng-chi 26 June 2006 (has links)
This thesis presents a computational analysis of the magnetic field of low-frequency power transmission lines, and the approaches to its suppression. First, according to the structure of Taiwan's three-phase A.C. transmission network, this research calculated the distribution of conducting wires' magnetic field under specific configuration by applying the theories of Near-field effect, Biot Savart's law, and double complex number. Second, this research explored the features of various approaches to magnetic field suppression with magnetic-field vector analyses and Matlab simulations. Finally, two magnetic-field cancellation methods, the ¡§circuit space arrangement¡¨ and ¡§time phase permutations¡¨ were adopted to investigate their magnetic effects under various structures and combinations of transmission lines. This study reveals that the magnetic field can be effectively suppressed by using appropriate configuration of transmission lines in space and phase. By applying the result to the design and construction of transmission lines, we can meet not only the requirements of magnetic field reduction, but also the needs of the least cost.
38

Improved Equivalent Transmission Line Method for the Shielding Effectiveness of Metal Enclosures with Apertures

Lee, Wei-Kuo 03 July 2006 (has links)
Because the metal enclosure with apertures is the structure of the cavity form, FDTD method belonging to full-wave analytical algorithm isn¡¦t efficient for analyzing such case. Thereby the ETL method belonging to analytical formulation provides another way to analyze it. Although the structure which it can apply to isn¡¦t as complex as that in full-wave analytical algorithm, the computing time is shorter than FDTD. In contrast, the method can¡¦t get good agreement. Thus two improved ways are introduced in this paper. One is to make the suitable structure wider and the other is to consider the higher mode original ETL method isn¡¦t included to improve the accuracy. Further these two ways make the suitable range of the method wider and the method has good practicability.
39

RF crosstalk in InP based Transmission Lines

Khosravi Nahouji, Mahboobeh January 2014 (has links)
Currently two main tracks are considered for integration of photonic circuits. Silicon based integration may be more cost effective; however implementation of some functionalities like laser, is problematic. In contrast InP offers complete solution of photonic integration including laser diodes. Additionally, much higher speeds may be anticipated from InP based integration. As in the case of ordinary integrated circuits, attempts to increase degree (density) lead to undesired coupling-crosstalk between the components. Three types of cross coupling may be clearly distinguished: optical, RF(electric) and thermal. Each of them has its specifics, physical mechanisms and methods of analysis. Modeling RF crosstalk will be in the focus of this project. To drive active components, such as laser and photodiodes, conducting tracks are integrated with photonic components. In multichannel photonic IC chips these tracks become very dense leading to strong parasitic electrical couplings between them. This crosstalk becomes more problematic in high speed photonic IC chips where the frequency of the RF signals (modulation, detection) is in the range up to 10GHz and beyond. Thus modeling of the crosstalk between RF tracks (also between RF and DC) is of prime importance. This is the main task of the project. A further task is analysis of the crosstalk using developed models and considering designs allowing reduced cross coupling.
40

Broadband Microwave Negative Group Delay Transmission Line Phase Shifters

Keser, Sinan 20 November 2012 (has links)
The analysis and design of passive broadband negative group delay (NGD) transmission line phase shifters is presented. By extending the metamaterial transmission line concept to include loss, a NGD unit cell is proposed. Phase shifters are supplemented with NGD unit cells to produce a flattened phase response significantly increasing phase bandwidths. The design methodology of a NGD phase shifter is presented with consideration of nominal phase, frequency, impedance, maximum insertion loss and bandwidth. The relation between gain, bandwidth and group delay signifies a fundamental design limitation and tradeoff. A significant application of NGD phase shifters for removing beam squint in series fed antenna arrays is discussed. Several NGD phase shifters are fabricated and experimentally verified in the UHF band upwards of 1 GHz using planar microstrip transmission lines loaded with passive surface mount RF components with both positive and negative phase shifts.

Page generated in 0.084 seconds