• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 274
  • 52
  • 49
  • 20
  • 15
  • 12
  • 7
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 618
  • 618
  • 618
  • 143
  • 132
  • 130
  • 114
  • 99
  • 93
  • 68
  • 67
  • 63
  • 63
  • 56
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Theoretical aspects of scanning transmission electron microscopy /

Findlay, Scott David. January 2005 (has links)
Thesis (Ph.D.)--University of Melbourne, Dept. of Physics, 2005. / Typescript. Includes bibliographical references (leaves 205-223).
12

Novel wavelet-based statistical methods with applications in classification, shrinkage, and nano-scale image analysis

Lavrik, Ilya A. January 2006 (has links)
Thesis (Ph. D.)--Industrial and Systems Engineering, Georgia Institute of Technology, 2006. / Huo, Xiaoming, Committee Member ; Heil, Chris, Committee Member ; Wang, Yang, Committee Member ; Hayter, Anthony, Committee Member ; Vidakovic, Brani, Committee Chair.
13

Fabrication and characterization of 1D oxide nanostructures /

Jin, Kewang. January 2005 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references (leaves 68-77). Also available in electronic version.
14

TEM studies of calcium phosphates for the understanding of biomineralization /

Xin, Renlong. January 2006 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2006. / Includes bibliographical references (leaves 119-132). Also available in electronic version.
15

Spermatological characters in Bothriocephalidea (Cestoda) / Spermatological characters in Bothriocephalidea (Cestoda)

ŠÍPKOVÁ, Lenka January 2011 (has links)
Spermiogenesis and ultrastructure of the spermatozoon of two bothriocephalidean cestodes, Oncodiscus sauridae and Senga sp., have been studied using transmission electron microscopy. The presence of a classical pattern for spermatological characters (spermiogenesis of type I with dense-material in early stages and sperm of type II with a characteristic ring of cortical microtubules in the anterior part) in Bothriocephalidea is discussed.
16

Preparation and characterisation of mixed CeO2-Nb2O5-Bi2O3 nanoparticles

Moore, Katharine January 2015 (has links)
Mixed metal oxides are ionic compounds containing at least two metal ions within an oxide structure. The literature contains a plethora of examples of mixed metal oxides on the bulk scale, which have been well characterised, however, mixed metal oxides on the nanoscale are far less well understood. The work presented here investigates the Bi2O3-CeO2-Nb2O5 mixed oxide system and characterises the resulting nanoparticles and crystal structures. Although the parent oxides are well known and much work has previously been done in analysing their crystal structures, combinations of these oxides have not been well characterised, especially on the nanoscale. Using high resolution electron microscopy (HRTEM), powder X-ray diffraction (PXRD), electron dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) as analytical tools, the structures of the nanoparticles in this system have been explored. As each of the parent oxides possess useful properties, which have been utilised in industrial applications such as electrolyte components in solid oxide fuel cells and as catalysts in a range of chemical reactions, it was hypothesised that if all three metal ions could be contained in one particle they could show novel and interesting characteristics. It was proposed that due to the more relaxed crystal structure in nanoparticles, the solid solubility of the metal ions should be increased, and a solid solution of ions would form. This work presents results showing the synthesis of binary and ternary oxides in the nano-form within the Bi2O3-CeO2-Nb2O5 system, including quantitative analysis of these particles. Secondly, and most importantly, it presents the first successful synthesis of quaternary oxide nanoparticles containing bismuth, cerium and niobium using the low temperature resin-gel method. Finally, the work attempts to explain how and why the ions are ordered in a given arrangement, with bismuth showing a preference for surface site occupation, as shown by XPS data, and describes some preliminary computational results which corroborate the experimental data.
17

Effect of temperature on the nucleation and growth of precious metal nanocrystals

Pitto-Barry, Anaïs, Barry, Nicolas P.E. 23 October 2019 (has links)
Yes / Understanding the effect of physical parameters (e.g., temperature) on crystallisation dynamics is of paramount importance for the synthesis of nanocrystals of well‐defined sizes and geometries. However, imaging nucleation and growth is an experimental challenge owing to the resolution required and the kinetics involved. Here, by using an aberration‐corrected transmission electron microscope, we report the fabrication of precious metal nanocrystals from nuclei and the identification of the dynamics of their nucleation at three different temperatures (20, 50, and 100 °C). A fast, and apparently linear, acceleration of the growth rate is observed against increasing temperature (78.8, 117.7, and 176.5 pm min−1, respectively). This work appears to be the first direct observation of the effect of temperature on the nucleation and growth of metal nanocrystals. / The Royal Society. Grant Number: UF150295 Leverhulme Trust. Grant Number: ECF-2013-414 The Academy of Medical Sciences. Grant Number: SBF003\1170
18

Atomic resolution microscopy using electron energy-loss spectroscopy

Witte, C. January 2008 (has links)
This thesis explores the theory of electron energy-loss spectroscopy (EELS) in atomic resolution electron microscopy. / The first unequivocal evidence of the effective nonlocal potential in momentum-transfer-resolved EELS is presented. For suitable geometries, the nonlocal potential can be well approximated by a local potential. In scanning transmission electron microscopy (STEM) the validity of this is mainly influenced by the detector size and, contrary to conventional wisdom, a thin annular detector does not allow direct image interpretation. It is found that the best way to ensure the potential is well approximated by a local potential is to use a detector with a large collection angle. / To simplify computation and interpretation it is desirable to make the single-channelling approximation. In this approximation only the elastic scattering of the probe before the ionisation event is modelled. It is shown how this approximation breaks down for the small detectors used in momentum-transfer-resolved EELS and this is confirmed with experimental results. Double-channelling calculations, where the channelling of the probe both before and after the ionisation event are modelled, can also be simulated. An alternative approximation for small detectors that includes double channelling and is more applicable for momentum-transfer-resolved EELS is also presented. / Beyond chemical information, the fine structure of an absorption edge gives bonding and electronic information. Incorporating fine structure into channelling theory allows the exploration of the effects of channelling on fine structure. The weighting of the two different spectra in graphite, as a function of incident probe tilt in momentum-transfer-resolved EELS, is calculated using double-channelling simulations. This is combined with experimental data and multivariate statistical analysis to extract the two physical spectra, greatly simplifying the analysis of a large data set. / The effect of the nonlocal potential and channelling on site-specific electronic structure analysis by channelling EELS is examined. It is found that using a large on-axis detector can make the interaction effectively local, leading to a greater change in the spectra as a function of sample tilt. Alternatively offsetting the detector can achieve similar results but at the cost of greater statistical noise. Channelling calculations were combined with the program FEFF and the full energy differential cross section was calculated from first principles for the aluminium K edge as a function of sample tilt in nickel aluminate spinel. Qualitative agreement with experiment was found but quantitative agreement will require further investigation. / The theory of fine structure in STEM was examined, using strontium titanate to see how the high spatial resolution of STEM can be used in conjunction with energy-loss near-edge spectroscopy measurements. The possibility of imaging unoccupied electron molecular orbitals using STEM was also examined.
19

Characterization of Catalyst Coated Membranes using Electron and X-ray Microscopy

Guimarães de Azeredo Melo, Lis 11 1900 (has links)
Proton-Exchange Membrane Fuel Cells are an alternative source of electricity generation for automobiles and stationary power plants. With increasing concerns on environmental issues, recent research has focused on maximizing the efficiency and durability as well as minimizing the costs of fuel cells. One of the main areas of research is optimizing the structure of the cathode catalyst layer. The main driving force of this thesis was the effective visualization of nanostructure of the ionomer, which is responsible for proton conduction in the cathode catalyst layer. However, challenges regarding sample preparation and radiation damage still need to be well understood. Different sample preparation techniques of catalyst inks and catalyst coated membranes were used for Scanning and Transmission Electron Microscopy, such as freeze fracturing, ultramicrotomy and Focused Ion Beam. Comparisons of the microstructure and chemical differences of all components, especially the ionomer, prepared by ultramicrotomy and Focused Ion Beam, was done with Transmission Electron Microscopy and Scanning Transmission X-ray Microscopy applied to the same catalyst coated membrane sample. Detailed spectroscopic information regarding components in both specimens was compared with C 1s and F 1s near edge X-ray absorption spectra recorded in a Scanning Transmission X-ray Microscope. Focused Ion Beam causes extensive damage to the carbon support and ionomer but prepares thinner sections than ultramicrotomy. This work makes it possible to understand the limitations of each sample preparation and compositional analysis technique in order to later apply one of them to image the ionomer in the catalyst layer at the nanoscale, hopefully using tomography techniques. / Thesis / Master of Materials Science and Engineering (MMatSE)
20

Inorganic and Metal-Organic Framework Materials : Synthesis and structure characterization

Liu, Leifeng January 2014 (has links)
Inorganic and metal-organic framework materials possessing accessible and permanent pores are receiving tremendous attention. Among them, zeolites are the most famous class due to their wide applications on petrochemistry and gas separation. Besides zeolites, the other oxide framework materials are also intensively investigated because of their diverse structures and compositions. Metal-organic frameworks are built from metal clusters and organic linkers. By rational designing the reagent, the network with desired topology and functionality can be synthesized. For all of the framework materials mentioned above, to explore novel framework structures is important for improving properties and discovering new applications. This thesis includes the synthesis of zeolites and structure characterization for various types of inorganic framework materials. The zeolite synthesis conditions was exploited. With the optimized condition, the zeolite ITQ-33 was synthesized as single crystals. From the single crystal X-ray diffraction data, the disorder in the structure is discovered and explained. Following the topic of disorder and twinning, we proposed a novel method of solving structure of pseudo-merohedric twinning crystal by using an example of a metal-organic complex crystal. Then we also showed methods for solving structures of high complexity and nano-crystal by using mainly powder X-ray diffraction and transmission electron microscopy. Four examples were shown in chapter 4 including open-framework germanates and metal-organic frameworks. / <p>At the time of the doctoral defence the following paper was unpublished and a status as follows: Paper  4: Manuscript</p>

Page generated in 0.14 seconds