• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 9
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Distributed Power Control and Medium Access Control Protocol Design for Multi-Channel Ad Hoc Wireless Networks

Almotairi, Khaled Hatem January 2012 (has links)
In the past decade, the development of wireless communication technologies has made the use of the Internet ubiquitous. With the increasing number of new inventions and applications using wireless communication, more interference is introduced among wireless devices that results in limiting the capacity of wireless networks. Many approaches have been proposed to improve the capacity. One approach is to exploit multiple channels by allowing concurrent transmissions, and therefore it can provide high capacity. Many available, license-exempt, and non-overlapping channels are the main advantages of using this approach. Another approach that increases the network capacity is to adjust the transmission power; hence, it reduces interference among devices and increases the spatial reuse. Integrating both approaches provides further capacity. However, without careful transmission power control (TPC) design, the network performance is limited. The first part of this thesis tackles the integration to efficiently use multiple channels with an effective TPC design in a distributed manner. We examine the deficiency of uncontrolled asymmetrical transmission power in multi-channel ad hoc wireless networks. To overcome this deficiency, we propose a novel distributed transmission power control protocol called the distributed power level (DPL) protocol for multi-channel ad hoc wireless networks. DPL allocates different maximum allowable power values to different channels so that the nodes that require higher transmission power are separated from interfering with the nodes that require lower transmission power. As a result, nodes select their channels based on their minimum required transmission power to reduce interference over the channels. We also introduce two TPC modes for the DPL protocol: symmetrical and asymmetrical. For the symmetrical mode, nodes transmit at the power that has been assigned to the selected channel, thereby creating symmetrical links over any channel. The asymmetrical mode, on the other hand, allows nodes to transmit at a power that can be lower than or equal to the power assigned to the selected channel. In the second part of this thesis, we propose the multi-channel MAC protocol with hopping reservation (MMAC-HR) for multi-hop ad hoc networks to overcome the multi-channel exposed terminal problem, which leads to poor channel utilization over multiple channels. The proposed protocol is distributed, does not require clock synchronization, and fully supports broadcasting information. In addition, MMAC-HR does not require nodes to monitor the control channel in order to determine whether or not data channels are idle; instead, MMAC-HR employs carrier sensing and independent slow channel hopping without exchanging information to reduce the overhead. In the last part of this thesis, a novel multi-channel MAC protocol is developed without requiring any change to the IEEE 802.11 standard known as the dynamic switching protocol (DSP) based on the parallel rendezvous approach. DSP utilizes the available channels by allowing multiple transmissions at the same time and avoids congestion because it does not need a dedicated control channel and enables nodes dynamically switch among channels. Specifically, DSP employs two half-duplex interfaces: One interface follows fast hopping and the other one follows slow hopping. The fast hopping interface is used primarily for transmission and the slow hopping interface is used generally for reception. Moreover, the slow hopping interface never deviates from its default hopping sequence to avoid the busy receiver problem. Under single-hop ad hoc environments, an analytical model is developed and validated. The maximum saturation throughput and theoretical throughput upper limit of the proposed protocol are also obtained.
12

無線網狀網路上利用多傳輸功率及多網卡之跨層路由協定設計 / Cross-Layer Design for Multi-Power, Multi-Interface Routing Protocol in Wireless Mesh Networks

蔡松達, Tsai, Sung Ta Unknown Date (has links)
近年來無線網狀網路(Wireless Mesh Networks)備受矚目,無線網狀網路繼承原有的ad hoc networks的特性並提供階層式及多網卡的網路存取架構。在multi-hop networks下,傳輸功率的控制和網路路由的選擇是重要的議題,因為不同的傳輸功率產生不同的網路拓墣連結性和干擾。此外,在不同網路卡間的路由選擇也會產生不同程度的intra/inter-flow 干擾。這些特性對網路效能有密切的影響,過去相關的路由協定設計也大多未同時考量傳輸功率控制與多網路卡的特性。 在這篇論文中,我們提出了跨網路協定層的路由協定,稱作M2iRi2,同時考量傳輸功率的控制並將Intra/Inter-flow的干擾導入到路由路徑的選擇。節點上的網路卡在物理層(Physical layer) 計算目前對潛在可容忍的新增干擾,並將此訊息送到網路層(Network layer)和鄰居節點作交換。透過此資訊的交換,在路由發現時控制路由請求封包的傳輸功率,當路由建立後,封包根據路由表的記載,選擇所對應的路由路徑和傳輸功率。經由NS-2模擬結果顯示,我們所提出的跨網路協定層路由協定可同時兼顧網路的吞吐量和平均點對點的延遲。 / In recent years, WMNs (Wireless Mesh Networks) technologies have received significant attentions. WMNs not only accede to the advantages of ad hoc networks but also provide hierarchical multi-interface architecture. Transmission power control and routing path selections are critical issues in the past researches of multi-hop networks. Variable transmission power levels lead to different network connectivity and interference. Further, routing path selections among different radio interfaces will also produce different intra/inter-flow interference. These features tightly affect the network performance. Most of the related works on routing protocol design do not consider transmission power control and multi-interface environment simultaneously. In this thesis, we proposed a cross-layer routing protocol called M2iRi2 which coordinates transmission power control and intra/inter-flow interference considerations as routing metrics. Each radio interface calculates the potential tolerable added transmission interference in the physical layer. When the route discovery starts, the M2iRi2 will adopt the appropriate power level to evaluate each interface quality along paths. The simulation results demonstrate that our protocol can enhance both network throughput and end-to-end delay.
13

Dynamic power control in backbone wireless mesh networks : a decentralized approach / Le contrôle de pouvoir dynamique dans la radio de colonne vertébrale fait concorder des réseaux : une approche décentralisée

Olwal, Thomas 15 December 2010 (has links)
L'évolution importante des réseaux sans fil tend à fournir les supports nécessaires aux applications ubiquitaires émergentes dans les réseaux Mesh sans fil. Les réseaux mesh comprennent des nœuds stationnaires qui remplissent la fonction de routage et appelés routeurs Mesh sans fil (WMR) et qui consitutent le réseau backbone sans fil (WBMN) ainsi que des nœuds clients mesh sans fil (WMCs). Alors que les WMCs sont limités en termes de fonctions et de resources radio, les WMRS fournissent des fonctions de pont et de passerelle afin de connecter les réseaux WMNs aux autres réseaux comme les réseaux cellulaires, les réseaux IEEE 802.11, les réseaux IEEE 802.16, ou tout simplement à Internet. Par conséquent, les réseaux WMRs sont construits à partir sur la base d'équipement radio de communication rapide et/ou multi-radio et multi-canaux. Les routeurs WMRs sont supposes être auto-organisés, auto-configurés et constituant un réseau WNMN robuste ce qui nécessite de soutenir des volumes importants de trafic de données et sur de longues périodes. Cependant, répondre à attentes élevées en termes de services nécessite le développement d'approches décentralisés pour le control dynamique des puissances de transmission (DTPC). La présente thèse se focalise sur le problème DTPC pour les deux cas de réseaux; utilisant un canal de communication et multicanaux. Pour les réseaux exploitant un seul canal, le problème est formulé en termes de problème d'optimisation où l'objectif est de minimiser en même temps des critères convexes associés aux liens et aux réseaux. Afin de résoudre ce problème, des modèles et des algorithmes, appelés MATA (multiple access transmission aware), ont été proposés. Pour les réseaux WBMNs utilisant des systèmes multi-radio et multi-canaux (MRMC), le réseau est modélisé par un ensemble de graphes appelés UCGs (unified channel graphs), chacun consistant les utilisateurs connectés au point d'accès en utilisant le même canal fréquentiel. Pour chaque ensemble UCG, le problème à résoudre un problème quadratique et stochastique soumis aux contraintes des états des liens dynamiques LSI (Link State Information) de tous les UCGs. Le protocole PMMUP, mutli-radio et minimisant la consummation énegétique, est propose au niveau de la couche liaison. Algorithmes d'estimation prédictive base sur ce protocol sont proposes pour résoudre les problèmes d'optimisation associés aux UGCs. Les problèmes énergétiques, les instabilités des queues et les interférences, sont formulés en termes de problèmes de commande optimale couplée, appelés SPWC (singularly-perturbed weakly-coupled). Pour résoudre les problèmes SPWC caractérisant le problème de commande optimal des energies de transmission, l'algorithme HORA (aeneralized higher-order recursive algorithm) qui permet d'obtenir les solutions stables pour les équations de Riccati a été développé. Les performes des modèles et algorithmes proposés dans le cadre de la présente thèse ont été évalués tant sur le plan théorique qu'en simulation. Différentes simulations ont été effectuées sur un large ensemble de topologies réseaux générés aléatoirement. Les résultats de simulation et analytiques Simulation confirment l'efficacité des algorithmes proposés par rapport à la majorité des techniques existantes / The remarkable evolution of wireless networks into the next generation to provide ubiquitous and seamless broadband applications has recently triggered the emergence of Wireless Mesh Networks (WMNs). The WMNs comprise stationary Wireless Mesh Routers (WMRs) forming Wireless Backbone Mesh Networks (WBMNs) and mobile Wireless Mesh Clients (WMCs) forming the WMN access. While WMCs are limited in function and radio resources, the WMRs are expected to support heavy duty applications : that is, WMRs have gateway and bridge functions to integrate WMNs with other networks such as the Internet, cellular, IEEE 802.11, IEEE 802.15, IEEE 802.16, sensor networks, et cetera. Consequently, WMRs are constructed from fast switching radios or multiple radio devices operating on multiple frequency channels. WMRs are expected to be self-organized, self-configured and constitute a reliable and robust WBMN which needs to sustain high traffic volumes and long “online” time. However, meeting such stringent service expectations requires the development of decentralized dynamic transmission power control (DTPC) approaches. This thesis addresses the DTPC problem for both single and multiple channel WBMNs. For single channel networks, the problem is formulated as the minimization of both the link-centric and network-centric convex cost function. In order to solve this issue, multiple access transmission aware (MATA) models and algorithms are proposed. For multi-radio multi-channel (MRMC) WBMNs, the network is modelled as sets of unified channel graphs (UCGs), each consisting of interconnected active network users communicating on the same frequency channel. For each UCG set, the minimization of stochastic quadratic cost functions are developed subject to the dynamic Link State Information (LSI) equations from all UCGs. An energy-efficient multi-radio unification protocol (PMMUP) is then suggested at the Link-Layer (LL). Predictive estimation algorithms based on this protocol are proposed to solve such objective functions. To address transmission energy and packet instabilities, and interference across multiple channels, singularly-perturbed weakly-coupled (SPWC) control problems are formulated. In order to solve the SPWC transmission power control problem, a generalized higher-order recursive algorithm (HORA) that obtains the Riccati Stabilizing Solutions to the control problem is developed. The performance behaviours of the proposed models and algorithms are evaluated both analytically and through computer simulations. Several simulations are performed on a large number of randomly generated topologies. Simulation and analytical results confirm the efficacy of the proposed algorithms compared to the most recently studied techniques

Page generated in 0.0714 seconds