• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 21
  • 12
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 145
  • 92
  • 79
  • 52
  • 49
  • 43
  • 33
  • 28
  • 24
  • 22
  • 19
  • 18
  • 18
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optimal weighted partial decision combining for fading channel diversity

Kot, Alan Douglas January 1987 (has links)
A diversity combining scheme is examined that utilizes a demodulator's hard decisions in conjunction with knowledge of each decision's reliability. A maximum-likelihood bit decision is made, based on these partial decisions from the demodulator and on measurements of the state of the fading channel. The technique is sub-optimal since hard decisions are processed, but it may find application in low cost receiver design. The technique is optimal in the sense that a minimum probability of bit error is achieved, given a set of partial decisions and knowledge of their reliability. Performance analysis for the case of non-coherent frequency shift keying on a slow Rayleigh fading channel with additive white Gaussian noise includes the derivation of a tight upper bound on the probability of bit error, and estimates of the asymptotic performance relative to standard diversity schemes such as majority-voting, selection diversity, square-law, and maximal ratio combining. These results are supported by simulation results for bit and packet error rates in an example system. With five independent bit repeats and a BER of 10⁻³, the receiver is about 3 dB more efficient than majority-voting, and about 1 dB more efficient than selection diversity. The gain in efficiency, relative to the standard partial decision combination schemes, increases with the number of repeats. The degradation in performance in a practical receiver implementation is addressed, and it is demonstrated that near ideal performance may be obtained with only a few reliability weights quantized to a small number of levels. Furthermore, this performance is maintained over a wide range of average signal to noise ratio without having to adapt the reliability weights. When the reliability estimate is corrupted by additive white Gaussian noise, it is demonstrated that simple low- pass filtering of the signal strength estimate is sufficient to obtain near ideal performance. The performance is degraded in the presence of cochannel interference, but for a moderate level of interference the performance is demonstrated to be superior to majority-voting or selection diversity. Other results include a method to estimate the optimal quantization thresholds, and a method to obtain the probability of error of selection diversity receivers employing signal to noise ratio measurement quantization. The selection diversity analysis is applicable to the more general case of Rician fading. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
12

The design of an 885-megacycle television transmitter

Burk, Marvin Clyde. January 1951 (has links)
Call number: LD2668 .T4 1951 B83 / Master of Science
13

The design of an 885-megacycle television transmitter

Fultz, Kenneth Eugene. January 1950 (has links)
Call number: LD2668 .T4 1950 F85 / Master of Science
14

Design of multihop packet radio networks.

January 1985 (has links)
by Hung Kwok Wah. / Summary in Chinese and English / Bibliography: leaves 43-46 / Thesis (M.Ph.)--Chinese University of Hong Kong, 1985
15

Implementation of an underwater digital acoustic telemetry receiver /

McAvoy, Raymond A., January 2002 (has links)
Thesis (M.S.) in Electrical Engineering--University of Maine, 2002. / Includes vita. Includes bibliographical references (leaf 104).
16

Nearest neighbour decoding for fading channels

Asyhari, Agustian Taufiq January 2012 (has links)
No description available.
17

A bottom-up approach to emulating emotions using neuromodulation in agents

Parussel, Karla M. January 2006 (has links)
A bottom-up approach to emulating emotions is expounded in this thesis. This is intended to be useful in research where a phenomenon is to be emulated but the nature of it can not easily be defined. This approach not only advocates emulating the underlying mechanisms that are proposed to give rise to emotion in natural agents, but also advocates applying an open-mind as to what the phenomenon actually is. There is evidence to suggest that neuromodulation is inherently responsible for giving rise to emotions in natural agents and that emotions consequently modulate the behaviour of the agent. The functionality provided by neuromodulation, when applied to agents with self-organising biologically plausible neural networks, is isolated and studied. In research efforts such as this the definition should emerge from the evidence rather than postulate that the definition, derived from limited information, is correct and should be implemented. An implementation of a working definition only tells us that the definition can be implemented. It does not tell us whether that working definition is itself correct and matches the phenomenon in the real world. If this model of emotions was assumed to be true and implemented in an agent, there would be a danger of precluding implementations that could offer alternative theories as to the relevance of neuromodulation to emotions. By isolating and studying different mechanisms such as neuromodulation that are thought to give rise to emotions, theories can arise as to what emotions are and the functionality that they provide. The application of this approach concludes with a theory as to how some emotions can operate via the use of neuromodulators. The theory is explained using the concepts of dynamical systems, free-energy and entropy.
18

Novel techniques for monolithic microwave and millimeter-wave frequency converters

Ang, Kian Sen January 2000 (has links)
The development of single-chip transmitters and receivers is hindered by several obstacles. The main difficulties include the low quality factor of MMIC filters, limited output power of solid state devices at millimeter-wave frequencies, and poor frequency stability of monolithic oscillators. This research investigates novel techniques to overcome these challenges. The scope of work includes proposal of new circuit structures and techniques, theoretical analyses, MMIC realisations and experimental verifications with measured results. To reduce filtering requirements, single-ended and single-balanced resistive mixers, utilising a unique resonance technique to achieve port isolations, are developed for V-band direct conversion receivers. A double-balanced resistive mixer, with high input power capability to reduce output power amplification requirements is also developed for millimeter-wave transmitters. A distributed resistive mixer is proposed to achieve wideband performance with low intermodulation. As an alternative to the use of baluns for generating anti-phase signals required in balanced mixers, a balanced oscillator is introduced. This novel oscillator can also operate as a power combining oscillator to obtain higher output power. In addition, a transmission-line stabilising technique can be applied to improve the oscillator phase noise. For the analysis of mixer circuits, the large-signal / small-signal analysis technique is extended to the case of multiple device mixers. For baluns used in the balanced mixers, a simplified analysis is applied, leading to a new class of impedance transforming baluns, which can be matched at all ports. The MMIC mixers, oscillator and baluns are realised using Marconi Caswell Ltd. foundry process. The performances of the fabricated MMICs are verified using on-wafer measurements. Theoretical analyses of the multiple device mixers and baluns are in good agreement with experimental results. The oscillator power combining and frequency stabilising techniques are also demonstrated experimentally.
19

Television picture transmission and optical signal processing

Meier, Otto January 1968 (has links)
Optical signal processing is introduced as a tool for investigations in the field of television compression research. An optical signal processing system is designed, which performs the Fourier transform of a picture signal F[B(x,y)] and its reconstruction F⁻¹ {F [B(x,y)]} . Some basic optical filtering experiments are performed in the spatial frequency plane, and the optical analogue of the frequency sampling theorem is demonstrated. The Fourier transforms of test pattern pictures show large gaps which can be used for compression. Observation of complex spectra of continuous tone pictures is found to be impaired by noise effects. A physiological experiment is carried out, which investigates the relationship between tolerable flicker frequency and spatial frequency of a television picture. It is found that the tolerable flicker rate f decreases as the spatial frequency fx is increased, according to the empirical equation fc = fo exp(-kfx). fo and k are parameters depending on factors like contrast ratio, kind and size of picture, etc. Compression systems using the above results are found to have a limit of obtainable compression ratio of approximately 3 to 1. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
20

Sensor synchronization, geolocation and wireless communication in a shipboard opportunistic array

Loke, Yong 03 1900 (has links)
A wirelessly networked opportunistic digital array radar (WNODAR) is an integrated ship wide digital phased array, where the array elements are placed at available open areas over the entire surface of the platform. The array elements are self-standing digital transmit/receive (T/R) modules with no hardwire connections other than prime power. All control and digitized signals are passed wirelessly between the elements and a central signal processor. This research investigates the problem of integrating the array elements through the design of a wireless synchronization and geolocation network. Phase synchronization of array elements is possible using a simple synchronization circuit. A technical survey of geolocation techniques was performed, and performance curves for the WNODAR operating under different seastate conditions were obtained. Analysis and simulation results suggest that a position location scheme to correct for dynamic effects of hull deflection is not absolutely necessary for an array operating at a VHF or lower UHF frequency. Finally, a design of the demonstration T/R module is proposed. Based on projected communication requirements, the full-scale WNODAR demands a 3.7 Gb/s data transmission rate. The multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) approach has been identified as a promising solution to achieve gigabit transmission rates.

Page generated in 0.0519 seconds