• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physical analysis of percolating silver nanowire networks used as transparent electrodes for flexible applications / Analyse des propriétés physiques des réseaux percolants de nanofils d'argent en vue de leur utilisation comme électrodes transparentes dans des applications flexibles

Lagrange, Mélanie 12 October 2015 (has links)
Les électrodes transparentes (ET) sont présentes dans de nombreux dispositifs optoélectroniques. Par exemple, on peut les trouver au sein de cellules solaires, d'écrans tactiles, d'OLEDs ou encore de films chauffants transparents. Les propriétés physiques de ces électrodes influencent l'efficacité de ces dispositifs. Les ET sont fabriquées à partir de matériaux transparents conducteurs (TCM) dont le développement a débuté dans les années 1950 notamment avec les oxydes métalliques. Parmi ces oxydes transparents conducteurs (TCO), l'oxyde d'étain-indium (ITO) est celui le plus communément utilisé dans les cellules solaires et les écrans de télévision ou de smartphones. Cependant, de nouvelles exigences telles qu'une réduction des coûts, la flexibilité et la fabrication à faible température et/ou faible coût, ont orienté les recherches vers de nouveaux TCM, notamment à base de nanostructures. Parmi ces matériaux émergents, les réseaux de nanofils métalliques, en particulier de nanofils d'argent, présentent déjà des propriétés optiques et électriques approchant celles de l'ITO, c'est-à-dire une conductivité électrique et une transparence élevées. Ces deux propriétés sont cependant intrinsèquement liées à la densité de nanofils constituant le réseau, et lorsque la conductivité augmente, la transparence diminue. Des traitements post-dépôt existent et permettent d'augmenter la conductivité électrique des ET sans changer la densité du réseau. Plusieurs de ces méthodes d'optimisation ont été étudiées pendant ce travail de thèse, en particulier le recuit thermique, analysé minutieusement afin de comprendre les différents mécanismes de réduction de la conductivité électrique induits par la température. L'examen des effets thermiques a soulevé la question de l'instabilité des nanofils en température, qui est aussi abordée et discutée dans ce document. Le paramètre clé de la densité de nanofils optimale menant au meilleur compromis entre transparence et conductivité a été recherché pour des nanofils de différentes dimensions. La taille des nanofils a en effet un fort impact sur les propriétés du réseau. Ainsi, les propriétés électriques, dans le cadre de la théorie de la percolation, les propriétés optiques comme la transmittance et le facteur de haze, et même l'instabilité thermique ont été reliées aux dimensions des nanofils ainsi qu'à la densité du réseau en utilisant des modèles physiques simples. En ce qui concerne les applications de ces ET émergentes, des études ont été menées sur l'application des réseaux de nanofils d'argent comme film chauffant transparent, et les résultats sont rapportés à la fin de ce document. Les limitations soulevées par cette application, comme les limites de stabilités électrique et thermique ont aussi été abordées. Pour finir, des études préliminaires menées sur de nouvelles applications comme des antennes transparentes ou le blindage électromagnétique transparent utilisant les nanofils d'argent sont présentées. / Transparent electrodes (TE) are used in a variety of optoelectrical devices. Among them, solar cells, flat panel displays, touch screens, OLEDs and transparent heaters can be cited. The physical properties of the TE influence the efficiency of the device as a whole. Such electrodes are fabricated from transparent conducting materials (TCM) that have been undergoing development since the 1950s, initially from metallic oxides. Among these transparent conducting oxides (TCO), indium tin oxide (ITO) is the most commonly used in solar cells, and television or smartphone screens. However requirements such as cost reduction, flexibility and low cost/temperature fabrication techniques have oriented the researches toward emerging TCM, mostly using nanostructures. Among them, metallic nanowire networks, and in particular silver nanowires (AgNW), already present optical and electrical properties approaching those of ITO, i.e. a high electrical conductivity and a high transparency. These two properties are intrinsically linked to the network density, therefore a tradeoff has to be considered knowing that when conductivity increases, transparency decreases. Some post-deposition treatments do exist, allowing an increase of the TE electrical conductivity without changing the network density. Several of these optimization methods have been thoroughly studied during this thesis work, especially thermal annealing. This method have been investigated in details to understand the different thermally-induced mechanisms of conductivity improvement. In addition, the investigation of thermal effects raised the question of thermal instability of the nanowires, which is also addressed and discussed in this document. The key issue of density optimization, allowing the best tradeoff between transparency and conductivity, has been investigated for nanowires with different dimensions. Nanowire size has a strong impact on the network properties. Thus, electrical properties, within the framework of percolation theory, optical properties such as transmittance or haziness, and even thermal instability have been linked to the nanowires' dimensions and the network density by using simple physical models. Regarding the application of these emerging TE, studies were conducted on the application of AgNWs as transparent heaters, and the results are reported at the end of the document. Limitations arising from this application, like thermal and electrical stabilities, have also been addressed. To finish, preliminary studies conducted on new applications such as transparent antennas and transparent electromagnetic shielding using AgNW are presented.
2

Couches minces de chalcogénures de zinc déposées par spray-CVD assisté par rayonnement infrarouge pour des applications photovoltaïques / Zinc chalcogenides thin films deposited by infrared assisted spray-CVD for photovoltaic applications

Froger, Vincent 20 November 2012 (has links)
Parmi les différentes cellules photovoltaïques existantes, les technologies à base de CIGS représentent aujourd'hui une alternative sérieuse à celles basées sur le silicium. De même, les technologies organiques émergent en vue d'applications sur le marché de la faible puissance. Afin d'être parfaitement concurrentielle, ces cellules doivent s'affranchir au maximum de la présence d'indium (surcoût) au sein de leurs structures (TCO, couche absorbante), ou de matériaux toxiques comme le CdS utilisé en tant que couche tampon. Les chalcogénures de zinc tels que le Zn1-xMgxO ou le ZnOzS1-z peuvent être employées à la place du CdS grâce à leurs propriétés semi-conductrices. En dopant le Zn1-xMgxO par un ou plusieurs atomes métalliques trivalents, on peut également créer des électrodes transparentes (TCO) pouvant substituer les électrodes traditionnelles à base d'indium (ITO). Les couches minces synthétisées au cours de ce travail ont été réalisées par spray-CVD, une technique de dépôt hybride et innovante utilisant un mode de chauffage radiatif. Les améliorations apportées au réacteur expérimental et les avantages qu'elles dégagent en font une alternative crédible aux techniques traditionnelles. Les couches de Zn1-xMgxO ainsi synthétisées exhibent de très bonnes propriétés, dont une énergie de gap facilement ajustable, une forte mobilité électronique et une très bonne transparence. De même, des couches de ZnS ont été réalisées par l'usage d'un précurseur original, permettant de s'affranchir du ZnCl2 (corrosif) couramment utilisé en spray pyrolyse. Les différents TCO étudiés ont montré de faibles résistivités (10-3 Ω.cm) et ont pu être testés dans des cellules solaires organiques en structures inverses. / In the field of photovoltaic devices, organic and CIGS-based solar cells are both promising way to compete with silicon-based technologies for low and high power generation. In order to provide safe and cost-effective thin films for these devices, zinc chalcogenides layers represent interesting opportunities to replace indium (expensive) and cadmium-based (toxic) layers. Semiconductors like Zn1-xMgxO and ZnS had been synthesized using an infrared assisted spray-CVD apparatus. The interaction between an aerosol and the infrared radiation is the main innovation in this process and sparked off many advantages. With this simple, vacuum-free and chemical soft technique, Zn1-xMgxO thin films exhibit excellent optical transparency, high electrical conductivity and an easily band gap adjustment. The obtained properties, compared with those reported by other traditional techniques, classed infrared assisted spray-CVD as an interesting and promising alternative technique in order to deposit thin films for such applications. ZnS thin films had been prepared with an original chemical precursor which enable to work without ZnCl2, the traditional corrosive chemical precursor in spray pyrolysis. In addition to that, some transparent conductive oxides (TCO) had been investigated by doping ZnO and Zn1-xMgxO layers with aluminum and/or gallium. With a very high optical transparency and a resistivity as low as 10-3 Ω.cm, ZnO:Al exhibit workable properties as transparent electrodes. Indeed, inverted organic solar cells had been realized with those TCO and proved their well-functioning into such devices.

Page generated in 0.1084 seconds