Spelling suggestions: "subject:"transparent material"" "subject:"ransparent material""
1 |
Dielectric resonator antennas and bandwidth enhancement techniquesCastillo Solis, Maria De los angeles January 2015 (has links)
In this thesis a technique that is being used in another area of technology to optimize light reception in a photographic camera was also applied to the dielectric resonator antenna. The technique consisting of the use of thin film to couple the media and camera impedances resulted in a dielectric resonator antenna bandwidth enhancement technique. The bandwidth enhancement technique was found when thin film dielectric layer structure was used to couple the dielectric resonator and its feed mechanism. Remarkable good performance was detected with a coplanar waveguide fed cylindrical dielectric resonator antenna which resulted in an improvement to its fractional bandwidth from 7.41% to 50.85%. Extensive experimental work was undertaken in order to explore the extent offered in bandwidth performance by using thin film dielectric layer structure in the dielectric resonator antenna performance. The experimental tasks were designed in order to investigate the influence of the thin film dielectric layer structure in relation to its size, shape, thickness, position and direction. Experimental results were supported with simulation work with the computer simulation technology microwave studio. The pieces of the material used for undertaking this experimental work were manually handcrafted. Four different dielectric resonator antenna designs were used in order to carry out the experimental work including the coplanar waveguide fed cylindrical dielectric resonator antenna. The other three dielectric resonator antennas were implemented using the same microstrip feed mechanism. Improved performance in bandwidth was achieved for all the designs. Optimization of the incoming signal was observed when a piece of thin film dielectric layer structure was placed in position between the feed mechanism and the dielectric resonator antenna. The optimization was observed as an enhancement in both the return loss level and the bandwidth of work. Different unexpected operational modes from were activated, such modes being called perturbed modes. Two different shapes were used in this project. Cylindrical dielectric resonator antenna (ɛr = 37) from a commercial provider and two novel rectangular dielectric resonator antennas. The novel rectangular dielectric resonator antennas were created with the methodology presented in this thesis. The rectangular dielectric resonator antennas were elaborated with transparent ceramic material (ɛr = 7) and TMM10i (ɛr = 9.8) from the Rogers Corporation company. The bandwidth enhancement technique was tested in novel embedded dielectric resonator antennas. A coplanar waveguide fed embedded cylindrical dielectric resonator antenna achieved a maximum bandwidth enhancement of 156.77% around f = 3.79 GHz with a thin film dielectric layer structure modified rectangular piece on one edge. Escalation to dielectric resonator antenna design at millimeter wave frequencies was achieved by using thin film dielectric layer structure bandwidth enhancement technique and a handcrafted printed circuit board millimeter wave feed mechanism. The millimeter wave feed mechanisms were achieved using a low cost alternative technique conceived as part of this project. Millimeter wave dielectric resonator antennas were implemented using thin film dielectric layers structure. The antennas deliver an adequate performance in bandwidth. The work presented in this thesis demonstrates dielectric resonator antenna simpler geometry, simple couple schemes, small size, low profile, light weight, and ease of excitation and orientation. Other parameters have also been investigated covering reduced complexity, high degree of flexibility, ease of fabrication and the use of low cost technology to escalate to millimeter wave frequencies.
|
2 |
Manufacturing techniques using femtosecond lasers in transparent materialsCho, Yonghyun 20 December 2019 (has links)
Femtosecond laser direct writing in transparent materials such as glass and optical
fibers has been used as a versatile tool in order to fabricate various 3-D photonic
structures such as active and passive waveguides, couplers, gratings and diffractive
optical elements (DOEs). This capability of patterning and refractive index modification
in the bulk of transparent materials depends on the nonlinear absorption phenomenon.
This practical technique has the potential to be used for cost effective and simplified
manufacturing in various applications. This thesis examines three advanced
manufacturing techniques that use ultrashort pulse filamentary propagation induced by
nonlinear absorption in the transparent materials. First, a new gradient index lens
fabrication method using femtosecond laser direct writing is introduced. Light that passes
through the lens with refractive index change resulting from localized energy deposition is
focused using a beam profiler. Second, wide welding area of glass samples are used to
fabricate microfluidic devices with long channels by adopting customized fixture. The fixture
making artificial pressure helps the two glass samples have wide optical contact area and the
highly intensive pulse filamentation strongly joins glass slides. As an example of a more
specific application, microfluidic samples with long grooves sealed by femtosecond laser
welding were successfully fabricated as part of this project. Finally, a screw-shaped, long period grating sensor was fabricated by rotating the optical fiber. This technique enables the
fiber core to have asymmetric refractive index change, resulting in higher sensitivity
compared to conventional long period grating sensors. Also, a new long-period grating sensor
with reverse bending effect has been demonstrated by producing complex pitches of
refractive index change. / Graduate
|
3 |
Assemblage de verre sur verre par impulsions laser femtosecondes / Glass on glass welding by femtosecond laser pulsesGstalter, Marion 12 October 2018 (has links)
Cette thèse porte sur l’assemblage de verres par impulsions laser femtosecondes. Une source laser femtoseconde à haute fréquence de répétition a été utilisée pour souder des lames de borosilicate de haute qualité de surface. La technique d’assemblage mise en œuvre diffère de la littérature par le système de focalisation utilisé. Un plan d’expériences a été réalisé afin de déterminer l’influence des différents paramètres laser sur les performances des soudures obtenues, démontrant que l’augmentation de la quantité d’énergie déposée améliore les performances mécaniques et thermiques. Les assemblages soudés peuvent atteindre une haute résistance mécanique supérieure à 25 MPa et supporter des chocs thermiques supérieurs à 300 ° C. L’adaptation des paramètres laser en fonction de la distance entre les lames de verre permet de souder des verres hors contact optique. Cette méthode a également été implémentée avec succès à l’assemblage de verre sur du silicium. / This PhD thesis is about glass bonding by femtosecond laser pulses. A femtosecond laser source generating high repetition rate laser pulses has been used to weld borosilicate glass plates with high surface quality. The method presented in this work differs from the literature by the focusing system implemented. The influence of the laser parameters on the bonded samples performances has been studied implementing a design of experiments, demonstrating that the mechanical and thermal resistance of the samples can be improved by increasing the amount of deposited. Thebonded samples provide high mechanical resistance, higher than 25 MPa, can held high thermal shock above 300 °C and present high transparency above 90 %. Glass bonding with a distance between the glass plates has been performed by adapting the laser parameters. Bonding of glass on silicon has also been performed successfully.
|
Page generated in 0.0819 seconds