Spelling suggestions: "subject:"transpiration cooling"" "subject:"transpiration fooling""
1 |
Investigation of Transpiration Cooling Film Protection for Gas Turbine Engine Combustion Liner ApplicationHinse, Mathieu 19 July 2021 (has links)
Transpiration cooling as potential replacement of multi-hole effusion cooling for gas turbine engines combustion liner application is investigated by comparing their cooling film effectiveness based on the mass transfer analogy (CFEM). Pressure sensitive paint was used to measure CFEM over PM surfaces which was found to be on average 40% higher than multi-hole effusion cooling. High porosity PM with low resistance to flow movement were found to offer uneven distribution of exiting coolant, with large amounts leaving the trailing edge, leading to lopsided CFEM. Design of anisotropic PM based on PM properties (porosity, permeability, and inertia coefficient) were investigated using numerical models to obtain more uniform CFEM. Heat transfer analysis of different PM showed that anisotropic samples offered better thermal protection over isotropic PM for the same porosity. Comparison between cooling film effectiveness obtained from temperatures CFET against CFEM revealed large differences in the predicted protection. This is attributed to the assumptions made to apply CFEM, nonetheless, CFEM remains a good proxy to study and improve transpiration cooling. A method for creating a CAD model of designed PM is proposed based on critical characteristics of transpiration cooling for future use in 3D printing manufacturing.
|
2 |
Measurements and modeling of transpiration coolingNatsui, Greg A. 01 January 2010 (has links)
A segment of transpiring wall is installed near a row of unshaped film holes. The effects on the aerodynamic performance and cooling downstream of the row of cylindrical holes in the presence of transpiration is studied numerically. The changes in behavior of the film due to relative positioning of the injection sources and blowing ratios are predicted to understand the sensitivity of cooling and aerodynamic losses on the relative positioning of the two sources and each blowing ratio. The results indicate that a coupling of the two sources allows a more efficient use of coolant by generating a more uniform initial film resulting in improved component durability through reduction of hot- streaks. With careful optimization the discrete holes can be placed farther apart laterally operating at a lower blowing ratio with a transpiration segment making the large deficits in cooling effectiveness mid-pitch less severe, overall minimizing coolant usage. Addition of transpiration increases the aerodynamic losses associated with injection. This effect can be arguably small compared to corresponding thermal benefits seen by coupling the two. Comparisons of linear superposition predictions of the two independent sources with the corresponding coupled scenario indicate the two films positively influence one another and outperform predictions. The interaction between the two films is dependent upon the relative placement of the transpiration; all relative placements have an overall beneficial effect on the cooling seen by the protected wall. An increase in area-averaged film cooling effectiveness of 300% is seen along with only a 50% increase in loss coefficient by injecting an additional 10% coolant. In this study the downstream placement of transpiration is found to perform best of the three geometries tested while considering cooling, aerodynamic losses, local uniformity and manufacturing feasibility. With further study and optimization this technique can potentially provide more effective thermal protection at a lower cost of aerodynamic losses and spent coolant. A method of measuring the local temperature of a porous wall is also discussed. Measurements are taken with temperature sensitive paint applied in thin coats to the wall. This technique was validated on a 40PPI, 7% relative density aluminum porous coupon. Measurements of discharge coefficients as well as downstream effectiveness data are included to verify the flow through the porous wall was unaltered by applying the paint. A maximum deviation in film-cooling effectiveness of 9% between the two cases with the majority of data falling within 4% was found, very similar to the experimental uncertainty of the rig. This excellent agreement between the repeated tests showed that by applying thermal paint to a wall of such porosity does not significantly affect the flow exiting the wall and hence the measurement technique can readily be applied to transpiration cooling studies at this scale. Methods of filtering the temperature sensitive paint on the porous wall are presented.
|
3 |
Transpiration Cooling Analysis Including Binary Diffusion Using 2-D Navier-Stokes Equations At Hypersonic Mach NumbersRavi, B R 06 1900 (has links) (PDF)
No description available.
|
4 |
Solutions architecturées par fabrication additive pour refroidissement de parois de chambres de combustion / Architectured materials fabricated by additive manufacturing for surface cooling of combustion chambersLambert, Océane 13 October 2017 (has links)
En vue de leur refroidissement, les parois de chambres de combustion aéronautiques sont perforées de trous à travers lesquels de l’air plus froid est injecté. La paroi est ainsi refroidie par convection et un film isolant est créé en surface chaude (film cooling). Cette thèse a pour objectif d’utiliser les possibilités de la fabrication additive pour proposer de nouvelles solutions architecturées qui permettraient d’augmenter les échanges de chaleur internes et d’obtenir ainsi de meilleures efficacités de refroidissement.La première approche consiste à élaborer de nouveaux designs de plaques multiperforées par Electron Beam Melting (EBM) et Selective Laser Melting (SLM) aux limites de résolution des procédés. Les architectures sont caractérisées en microscopie, en tomographie X et en perméabilité. Des simulations aérothermiques permettent de mettre en évidence l’effet de ces nouveaux designs sur l’écoulement et les échanges de chaleur, et de proposer des voies d’amélioration de la géométrie.La deuxième approche consiste à élaborer de façon simultanée une pièce architecturée par EBM, avec des zones denses et poreuses. A partir d’analyse d’images associée à une cartographie EBSD grand champ, il est possible de remonter aux mécanismes de formation du matériau poreux et de relier la perméabilité et la porosité aux paramètres procédé. Afin de favoriser le film cooling, il pourrait être avantageux que les zones microporeuses soient orientées dans le sens de l’écoulement. Pour ce faire, un nouveau procédé dénommé Magnetic Freezing, où des poudres métalliques forment une structure orientée par un champ magnétique, est mis au point.Les diverses solutions développées durant cette thèse sont testées sur un banc aérothermique. Les essais montrent qu’elles offrent un refroidissement plus efficace et plus homogène que la référence industrielle. Enfin, de premiers tests en combustion sur l’une des structures retenues, plus légère et plus perméable que la référence, montrent qu’il s’agit d’une solution aussi efficace à un débit traversant donné, et donc a priori plus efficace à une surpression donnée. / Combustion chamber walls are perforated with holes so that a cooling air flow can be injected through them. The wall is cooled by convection and an insulating film is created on the hot surface (film cooling). This PhD thesis aims to use the possibilities of additive manufacturing to provide new architectured solutions that could enhance the internal heat exchanges, and lead to a higher cooling effectiveness.The first approach is to develop new designs of multiperforated walls by Electron Beam Melting (EBM) and Selective Laser Melting (SLM) used at the resolution limits of the processes. They are characterized by microscopy, X-ray tomography and permeability tests. Some aerothermal simulations help understanding the effects of these new designs on the flow and on heat exchanges. These results lead to a geometry adaptation.The second approach is to simultaneously manufacture an architectured part with dense and porous zones by EBM. Thanks to image analysis combined with large field EBSD, it is possible to investigate the mechanisms leading to the porous zones and to link them to permeability and porosity. The film cooling effect could be favoured by the orientation of pores towards the cooling flow. Therefore, a new powder-based manufacturing process named Magnetic Freezing, where metallic powders organize into an oriented structure thanks to a magnetic field, is developed.The various solutions studied during this thesis are tested on an aerothermal bench. They all show a more efficient and homogeneous cooling than the industrial reference. Some first tests on one of the selected solutions are performed on a combustion bench. This lighter and more permeable structure proves to be a solution as efficient as the industrial reference at a given flow rate. It should therefore be a more efficient solution for a given overpressure.
|
5 |
Matériaux architecturés pour refroidissement par transpiration : application aux chambres de combustion / Architectured materials for transpiration cooling : application to combustion chambersPinson, Sébastien 09 December 2016 (has links)
Dans l’optique de refroidir les parois des chambres de combustion aéronautiques le plus efficacement possible, un intérêt particulier est aujourd’hui porté à la technologie de refroidissement par transpiration. L’air de refroidissement s’écoule au travers d’une paroi poreuse dans laquelle une grande quantité de chaleur est échangée par convection. L’éjection de l’air profite ensuite de la distribution des pores pour former une couche limite protectrice relativement homogène.Les matériaux métalliques obtenus à partir de poudres partiellement frittées sont de bons candidats pour former ces parois poreuses. Ce travail se focalise sur les échanges internes et consiste à développer une méthodologie permettant de dégager les architectures partiellement frittées les plus adaptées à ce type d’application.L’écoulement et les échanges de chaleur lors du refroidissement par transpiration sont régis par quelques propriétés effectives des matériaux qui sont fonction de l’architecture : la conductivité thermique effective, le coefficient de transfert convectif volumique et les propriétés de perméabilité. A l’aide de travaux expérimentaux ou d’études numériques sur des échantillons numérisés par tomographie aux rayons X, des relations simples entre les propriétés effectives des matériaux partiellement frittés et leurs paramètres architecturaux sont tout d’abord développées. La porosité, la surface spécifique et le type de poudre utilisé sont retenus pour prédire les paramètres effectifs.Ces relations sont finalement intégrées dans un modèle de transfert de chaleur prédisant la performance d’une solution dans les conditions de fonctionnement du moteur. Une optimisation "multi-objectifs" et une analyse des designs optimaux permettent alors de mettre en valeur quelques architectures montrant un fort potentiel pour des applications de refroidissement par transpiration. Des matériaux peu poreux formés à partir de larges poudres irrégulières semblent assurer le meilleur compromis entre tous les critères pris en compte. / In order to cool aero-engine combustion chambers as efficiently as possible, there is today a special interest given to transpiration cooling technology. The cooling air flows through a porous liner in which a large amount of heat can be exchanged by convection. The air injection could then take benefit of the pore distribution to form a more homogeneous protective boundary layer.Partially sintered metallic materials are potential candidates to form these porous liners. The present work focuses on internal heat transfers. It aims to develop a methodology capable of highlighting the most adapted partially sintered architectures to this kind of application.During transpiration cooling, flows and heat transfers are governed by some effective material properties which depends on the porous architecture: the effective solid phase thermal conductivity, the volumetric heat transfer coefficient and the permeability properties. Thanks to experimental works and numerical studies on samples digitized by X-ray tomography, simple relationships are first developed between the effective material properties of partially sintered materials and their architectural parameters. The porosity, the specific surface area and the powder type are selected to predict the effective properties.These relationships are finally integrated into a heat transfer model predicting the thermal performance of a design at working engine conditions. A multi-objective optimization and an analysis of the optimal designs highlight some architectures as being potentially interesting for transpiration cooling. Materials with a low porosity and made of large irregular powders seem to ensure the best trade-off among the different criteria taken into consideration.
|
Page generated in 0.0913 seconds