• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical evaluations of mechanisms governing the heat transport in the edge plasma of tokamaks / Etude numérique des mécanismes gouvernant le transport de la chaleur dans le plasma de bord des Tokamaks

Baudoin, Camille 08 February 2018 (has links)
La fusion nucléaire est une solution technologique prometteuse pour une nouvelle source d'énergie. Cependant, utiliser la par fusion nucléaire confinement magnétique comme source d'énergie constitue un challenge scientifique et technologique car cela requière à la fois un bon confinement du plasma de cœur et un contrôle des flux de chaleurs arrivant à la paroi. Ce travail est motivé par la problématique de la gestion des flux de chaleur dans les réacteurs de fusion. Cela est nécessaire pour éviter d'endommager les coûteux composants faisant face au plasma. La compréhension des mécanismes physiques régissant le transport de la chaleur dans le plasma de bord est une tâche critique pour le design des futures machines. Dans ce contexte, il est nécessaire de faire des prédictions fiables de l'étalement de la chaleur dans le but de dimensionner correctement ces futures machines. Cela appelle à un fondement théorique décrivant la manière dont l'énergie s'échappe du plasma. Des études théoriques et expérimentales ont tenté aboutir à cette fin, cependant les mécanismes en jeux ne sont toujours pas clairs. Pour atteindre ce but, la modélisation numérique est un complément nécessaire aux expériences. Ce travail de thèse est dédié à l'étude numérique des différents aspects du transport de la chaleur dans le plasma de bord un utilisant les approches fluides. Une attention particulière est porté à deux mécanismes suspectés de joué un grand rôle dans le transport de la chaleur : le transport intermittent due à la turbulence et le transport convectif à large échelle par les vitesses dérives. Le problème a été traité avec une approche graduelle en utilisant différent outils numériques. / Fusion devices are a promising solution for a new source of energy. However, using fusion reaction to produce power within a magnetic confinement is a scientific and technological challenge as it requires a high confinement in the core plasma at the same time as a good control of plasma exhaust on the material walls. This work is motivated by the key problematic of power handling in fusion power plants necessary to avoid damaging the expensive plasma facing components (PFC). The understanding of the physics underlying the heat transport, and more specifically is a critical task for the engineering design of future Tokamak devices. In this context, it is mandatory to make reliable predictions of the power spreading in order to correctly size the future Tokamaks. This calls for a theoretical ground describing the way energy escapes the core plasma through the separatrix and deposits on the PFCs. Some theoretical and experimental studies attempt to achieve such a task, however no definitive conclusion have been drawn yet. To achieve this goal, numerical modelling is a necessary complement to experimental results. This PhD work has been dedicated to the study of the different aspects of the heat transport in the edge plasma using a numerical fluid approach. Special focus was devoted to two types of mechanisms suspected to play an important role in the heat transport: intermittent turbulence; the large-scale convective transport.
2

Prediction of thermal conductivity and strategies for heat transport reduction in bismuth : an ab initio study . / Prédiction de la conductivité thermique et stratégie de réduction du transport de la chaleur dans le bismuth : étude ab initio.

Markov, Maksim 11 March 2016 (has links)
Cette thèse de doctorat porte sur l'étude théorique de la conductivité thermique du réseau dans le bismuth semi-métallique et sur les stratégies pour réduire la conductivité thermique en vue d'applications pour réduire l'échauffement dans les circuits électroniques, et pour la thermoélectricité. J'ai utilisé des méthodes avancées de résolution de l'équation de transport de Boltzmann pour les phonons, et de calcul ab initio des éléments de matrice de l'interaction phonon-phonon. J'ai calculé la dépendance en température de la conductivité thermique du réseau dans le matériau en volume en excellent accord avec les rares expériences disponibles. J'ai obtenu une description très précise, à l'échelle microscopique, du transport de la chaleur et j'ai quantifié la contribution des porteurs de charge à la conductivité thermique totale. J'ai démontré que la nano-structuration et la photo-excitation sont des moyens très efficaces dans le bismuth de contrôler la diffusion des phonons qui portent la chaleur, respectivement par interaction avec les bords de l'échantillon, et par interaction phonon-phonon. En contrôlant l'équilibre entre ces deux derniers effets, j'ai prédit de façon exhaustive l'effet de réduction pour différentes températures et tailles de nanostructures, pour des mono et poly-cristaux, semi-conducteurs ou semi-métalliques. Enfin, j'ai étudié l'élargissement anharmonique des phonons acoustiques et optiques, et j'ai déterminé pour chacun les interactions majeures qui contribuent à l'élargissement. L'atténuation du son a été prédite dans le bismuth pour de futures expériences. L'approximation des grandes longueurs d'ondes [long-wave approximation (LWA)] a été validée pour le bismuth et ses limites ont été déterminées. / This work is devoted to the theoretical investigation of the heat conduction in bulk bismuth and the possible strategies for its reduction. Thermal properties of Bi are extremely interesting because of its low thermal conductivity that makes this material suitable for the thermal management applications. Moreover, bismuth is an excellent model substance for the study of thermoelectricity and bismuth-based compounds such as Bi2 Te3 and Bi2 Se3 which are typical thermoelectric materials used in industrial applications.In collaboration with L. Paulatto (IMPMC), G. Fugallo (Ecole Polytechnique), F. Mauri(IMPMC) and M. Lazzeri (IMPMC) I have applied the recently developed advanced methods of the solution of the Boltzmann transport equation (BTE) and of the phonon-phonon matrix elements calculation to describe thermal transport in bismuth. I have obtained the temperature dependence of the lattice thermal conductivity which is in excellent agreement with experiment. Moreover I am able to predict the lattice thermal conductivity (LTC) at temperatures at which it has not been measured. I have found that most of heat is carried by the acoustic phonons. However, the optical phonons were shown to play an important role by modulating the magnitude of the acoustic-optical phonon interaction (AOPI) and thus the value of the lattice thermal conductivity. Furthermore, I have shown that the available experimental data for the lattice thermal conductivity for polycrystalline thin-films are remarkably explained by my calculations, which enables me to predict the effect of the LTC size reduction for various temperatures and nanostructure shapes and sizes.The methods I use contain no empirical fitting parameters and give a direct insight into the microscopic mechanisms determining the transport and anharmonic properties of the materials. This allows me to analyze the anharmonic broadening that is inversely proportional to the phonon lifetime, for the various phonon modes along the high symmetry directions in the Brillouin zone and show what are the major scattering channels for coalescence/decays of phonons that govern the thermal transport in Bi.
3

Variabilité Interannuelle à Décennale en Atlantique Nord et Mers Nordiques. Etude conjointe d'Observations, de Simulations Numériques et de Réanalyses

Lecointre, Albanne 14 December 2009 (has links) (PDF)
Ce travail de thèse a pour objectif de caractériser et quantifier les différences entre indices climatiques océaniques grande échelle simulés par une hiérarchie de neuf modèles numériques océaniques réalistes (cinq simulations libres et quatre réanalyses). Cette étude se focalise sur la région Atlantique Nord. Les indices climatiques suivants : transport méridien de volume (circulation méridienne d'overturning) et transport méridien de chaleur sont diagnostiqués dans les différents modèles. La période commune à huit des simulations s'étend sur neuf ans, l'étude de la variabilité de ces indices climatiques se focalise sur l'echelle interannuelle. L'influence de différents paramètres numériques : configuration et la résolution spatiales des modèles numérique libres, et l'influence de différents schémas d'assimilation de données séquentielle des réanalyses, sont évaluées au regard des observations et estimations disponibles de ces indices climatiques grande échelle. Il ressort de ce travail une importante diversité des solutions des modèles quant aux valeurs moyennes et aux variations de ces transports méridiens de volume et de chaleur. Les réanalyses océaniques étudiées ici, qui ont pourtant été contraintes vers un océan observé, peinent à converger vers des indices climatiques grande échelle cohérents, tant en moyenne qu'en variabilité interannuelle. Le manque de robustesse de ces réanalyses s'exprime par leur faible cohérence entre elles mais aussi au regard des estimations observationnelles disponibles, et illustre ainsi la difficulté de simuler des indices climatiques cohérents à grande échelle en assimilant avec des contraintes locales.
4

An entropic approach to magnetized nonlocal transport and other kinetic phenomena in high-energy-density plasmas / Une approche entropique au transport non local et aux autres phénomènes cinétiques dans les plasmas à hautes densités d'énergie

Del Sorbo, Dario 14 December 2015 (has links)
Les simulations hydrodynamiques pour la physique de haute densité d'énergie ainsi que pour la fusion par confinement inertiel exigent une description détaillée de flux d'énergie. Le mécanisme principal est le transport électronique, qui peut être un phénoméne non local qui doit être décrit avec des modèles de Fokker-Planck, stationnaires et simplifiés dans les codes hydrodynamiques à grande échelle. Mon travail thèse est consacré au développement d'un nouveau modèle de transport non local basé sur l'utilisation d'une méthode de fermeture entropique pour la résolution des premiers moments de l'équation de Fokker-Planck agrémentée d'un opérateur de collision dédié. Une telle fermeture permet une bonne résolution des fortes anisotropies de la fonction de distribution électronique dans les régimes où le développement d'instabilités électrostatiques à petite échelle le requiert. Ce modèle aux moments (M1) est comparé avec succès au modèle de Schurtz, Nicolaï et Busquet (SNB), référent dans le domaine du transport électronique non local. Ce modèle, basé sur l'hypothèse d'une faible anisotropie de la fonction de distribution sous-jacente induisant une relation de fermeture polynomiale (P1), utilise un opérateur de collision simplifié dont nous avons proposé une amélioration. Après avoir considéré plusieurs configurations typiques de transport de chaleur, nous avons montré que le modèle M1 ultidimensionnel peut prendre naturellement en compte des effets d'un plasmas magnétisés sur le transport électronique. De plus, ce modèle permet de calculer des fonctions de distribution utiles aux études cinétiques comme la stabilité du plasma dans la zone de transport. Nous confirmons avec notre modèle que le transport d'énergie électronique peut fortement modifier l'amortissement des ondes de Langmuir et des ondes acoustiques ; contrairement aux modèles non locaux simplifiés, M1 décrit les modifications de la fonction de distribution et l'amortissement des ondes du plasma. La structure du modèle permet également de prendre en compte naturellement des champs magnétiques autogénérés, qui jouent un rôle crucial dans des simulations multidimensionnelles. Ces champs magnétiques pourraient également être étudiés pour concentrer l'énergie dans les schémas d'ignition. Enfin, nous montrons que le modèle M1 reproduit les résultats de la théorie locale élaborée par Braginskii pour tous les niveau de magnétisation et propose de nouveaux résultats pour le régime non local. Ce travail constitue une première validation de l'utilisation des fermetures entropiques, dans les régimes de faibles anisotropies, qui va s'ajouter aux tests dans les régimes fortement anisotropes. / Hydrodynamic simulations in high-energy-density physics and inertial con nement fusion require a detailed description of energy uxes. The leading mechanism is the electron transport, which can be a nonlocal phenomenon that needs to be described with quasistationary and simplified Fokker-Planck models in large scale hydrodynamic codes. My thesis is dedicated to the development of a new nonlocal transport model based on a fast-moving-particles collision operator and on a first moment Fokker-Planck equation, simplified with an entropic closure relation. Such a closure enables a better description of the electron distribution function in the limit of high anisotropies, where small scale electrostatic instabilities could be excited. This new model, so called M1, is successfully compared with the well known nonlocal electron transport model proposed by Schurtz, Nicolaï and Busquet, using different collision operators, and with the reduced Fokker-Planck model, based on a small-anisotropies polynomial closure relation (P1). Several typical configurations of heat transport are considered. We show that the M1 entropic model may operate in two and three dimensions and is able to account for electron transport modifications in external magnetic fields. Moreover, our model enables to compute realistic electron distribution functions, which can be used for kinetic studies, as for the plasma stability in the transport zone. It is demonstrated that the electron energy transport may strongly modify damping of Langmuir and ion acoustic waves, while the simplified nonlocal transport models are not able to describe accurately the modifications of the distribution function and plasma wave damping. The structure of the M1 model allows to naturally take into account self-generated magnetic fields, which play a crucial role in multidimensional simulations. Moreover, magnetic fields could also be used for the focusing of energetic particles in alternative ignition schemes. The M1 model reproduces the results of the local transport theory in plasma, developed by Braginskii, in a broad range of degrees of magnetization and predicts new results in the nonlocal regime. This work constitutes a first validation of the entropic closure assumption in the weakly-anisotropic regime. It can be added to the existing tests, in the strongly-anisotropic regimes.

Page generated in 0.0836 seconds