• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling dynamic stochastic user equilibrium for urban road networks

Vythoulkas, Petros C. January 1991 (has links)
In this study a dynamic assignment model is developed which estimates travellers' route and departure time choices and the resulting time varying traffic patterns during the morning peak. The distinctive feature of the model is that it does not restrict the geometry of the network to specific forms. The proposed framework of analysis consists of a travel time model, a demand model and a demand adjustment mechanism. Two travel time models are proposed. The first is based on elementary relationships from traffic flow theory and provides the framework for a macroscopic simulation model which calculates the time varying flow patterns and link travel times given the time dependent departure rate distributions; the second is based on queueing theory and models roads as bottlenecks through which traffic flow is either uncongested or fixed at a capacity independent of traffic density. The demand model is based on the utility maximisation decision rule and defines the time dependent departure rates associated with each reasonable route connecting, the O-D pairs of the network, given the total utility associated with each combination of departure time and route. Travellers' choices are assumed to result from the trade-off between travel time and schedule delay and each individual is assumed to first choose a departure time t, and then select a reasonable route, conditional on the choice of t. The demand model has therefore the form of a nested logit. The demand adjustment mechanism is derived from a Markovian model, and describes the day-to-day evolution of the departure rate distributions. Travellers are assumed to modify their trip choice decisions based on the information they acquire from recent trips. The demand adjustment mechanism is used in order to find the equilibrium state of the system, defined as the state at which travellers believe that they cannot increase their utility of travel by unilaterally changing route or departure time. The model outputs exhibit the characteristics of real world traffic patterns observed during the peak, i. e., time varying flow patterns and travel times which result from time varying departure rates from the origins. It is shown that increasing the work start time flexibility results in a spread of the departure rate distributions over a longer period and therefore reduces the level of congestion in the network. Furthermore, it was shown that increasing the total demand using the road network results in higher levels of congestion and that travellers tend to depart earlier in an attempt to compensate for the increase in travel times. Moreover, experiments using the queueing theory based travel time model have shown that increasing the capacity of a bottleneck may cause congestion to develop downstream, which in turn may result in an increase of the average travel time for certain O-D pairs. The dynamic assignment model is also applied to estimate the effects that different road pricing policies may have on trip choices and the level of congestion; the model is used to demonstrate the development of the shifting peak phenomenon. Furthermore, the effect of information availability on the traffic patterns is investigated through a number of experiments using the developed dynamic assignment model and assuming that guided drivers form a class of users characterised by lower variability of preferences with respect to route choice.
2

Analysing the impact of disruptions in intermodal transport networks: A micro simulation-based model

Burgholzer, Wolfgang, Bauer, Gerhard, Posset, Martin, Jammernegg, Werner 03 1900 (has links) (PDF)
Transport networks have to provide carriers with time-efficient alternative routes in case of disruptions. It is, therefore, essential for transport network planners and operators to identify sections within the network which, if broken, have a considerable negative impact on the networks performance. Research on transport network analysis provides lots of different approaches and models in order to identify such critical sections. Most of them, however, are only applicable to mono-modal transport networks and calculate indices which represent the criticality of sections by using aggregated data. The model presented, in contrast, focuses on the analysis of intermodal transport networks by using a traffic micro simulation. Based on available, real-life data, our approach models a transport network as well as its actual traffic participants and their individual decisions in case of a disruption. The resulting transport delay time due to a specific disruption helps to identify critical sections and critical networks, as a whole. Therefore, the results are a valuable decision support for transport network planners and operators in order to make the infrastructure less vulnerable, more attractive for carriers and thus more economically sustainable. In order to show the applicability of the model we analyse the Austrian intermodal transport network and show how critical sections can be evaluated by this approach. (authors' abstract)

Page generated in 0.0901 seconds