• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 211
  • 53
  • 12
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 388
  • 388
  • 82
  • 55
  • 51
  • 51
  • 44
  • 35
  • 31
  • 29
  • 29
  • 28
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

An Inverse Source Location Algorithm for Radiation Portal Monitor Applications

Miller, Karen Ann 2010 May 1900 (has links)
Radiation portal monitors are being deployed at border crossings throughout the world to prevent the smuggling of nuclear and radiological materials; however, a tension exists between security and the free-flow of commerce. Delays at ports-of-entry have major economic implications, so it is imperative to minimize portal monitor screening time. We have developed an algorithm to locate a radioactive source using a distributed array of detectors, specifically for use at border crossings. To locate the source, we formulated an optimization problem where the objective function describes the least-squares difference between the actual and predicted detector measurements. The predicted measurements are calculated by solving the 3-D deterministic neutron transport equation given an estimated source position. The source position is updated using the steepest descent method, where the gradient of the objective function with respect to the source position is calculated using adjoint transport calculations. If the objective function is smaller than a predetermined convergence criterion, then the source position has been identified. To test the algorithm, we first verified that the 3-D forward transport solver was working correctly by comparing to the code PARTISN (Parallel Time-Dependent SN). Then, we developed a baseline scenario to represent a typical border crossing. Test cases were run for various source positions within each vehicle and convergence criteria, which showed that the algorithm performed well in situations where we have perfect knowledge of parameters such as the material properties of the vehicles. We also ran a sensitivity analysis to determine how uncertainty in various parameters-the optical thickness of the vehicles, the fill level in the gas tank, the physical size of the vehicles, and the detector efficiencies-affects the results. We found that algorithm is most sensitive to the optical thickness of the vehicles. Finally, we tested the simplifying assumption of one energy group by using measurements obtained from MCNPX (Monte Carlo N-Particle Extended). These results showed that the one-energy-group assumption will not be sufficient if the code is deployed in a real-world scenario. While this work describes the application of the algorithm to a land border crossing, it has potential for use in a wide array of nuclear security problems.
112

High electric field current transport in semi-insulating GaAs and InP

Luo, Yilin. January 2000 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 230-253).
113

Neuartige Einbauten zur Unterdrückung der Maldistribution in Packungskolonnen /

Kammermaier, Friederike. January 1900 (has links)
Thesis--Technische Universität München, 2008. / Includes bibliographical references.
114

Discontinuous Galerkin methods for reactive transport in porous media

Sun, Shuyu, January 2003 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references. Available also from UMI Company.
115

Semiclassical theory of spin transport in metallic and semiconductor heterostructures

Qi, Yunong, January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
116

Local time stepping and a posteriori error estimates for flow and transport in porous media /

Kirby, Robert Charles, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 138-149). Available also in a digital version from Dissertation Abstracts.
117

Semiclassical theory of spin transport in metallic and semiconductor heterostructures /

Qi, Yunong, January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
118

Gas transport properties of side-chain crystalline polymers /

Mogri, Zen, January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references (leaves 280-288). Available also in a digital version from Dissertation Abstracts.
119

Quantum transport study of mesoscopic systems and nanostructures

Xu, Fuming, 许富明 January 2011 (has links)
published_or_final_version / Physics / Doctoral / Doctor of Philosophy
120

Quantum transport properties of high-temperature superconductors

Huang, Kun, 黄琨 January 2012 (has links)
In this thesis, We will focus on discussing the Andreev tunneling and Josephson tunneling of underdoped cuprate superconductors. In particular, we emphasize how the pseudogap of the underdoped cuprate influences these tunneling behaviors. Our calculation is based on the theory of YRZ Green’s function in which the pseudogap acts as a precursor to the undoped Mott insulator. In the study of Andreev tunneling, the tunneling spectroscopy we obtained exhibits a two-gap feature, i. e., a small energy gap associated with Andreev reflection in the transparent limit and a large gap associated with single particle tunneling. Our results are in good agreement with the two-gap scenario observed in tunneling experiments for underdoped cuprate. In the study of Josephson tunneling, we aimed to test the proposal of “cooperon physics” by examining the Josephson coupling between two optimally doped (or overdoped) cuprate superconductors separated by a barrier of an underdoped-cuprate in its pseudogap state with finiteenergy cooperon excitation. Our calculation shows a significant contribution from the cooperon excitation to the Josephson coupling, which is comparable to that from nodal quasiparticles. Moreover, our results give a good description of the temperature-dependent enhanced Josephson tunneling revealed in experiments. / published_or_final_version / Physics / Doctoral / Doctor of Philosophy

Page generated in 0.0888 seconds