• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Pallet Stacking Pattern on Unit Load Bridging

Molina Montoya, Eduardo 04 May 2017 (has links)
The optimization of pallet design in today’s competitive supply chain is imperative to reduce costs and improve sustainability. With over two billion pallets in circulation in the United States, most packaged products are handled using unit loads and the interactions between the unit load components are not being considered in the pallet design process. This study aims to investigate the effect of the interlocking of layers and the pallet stacking patterns on pallet bending. This effect is part of a greater encompassing observed behavior known as load bridging, where a redistribution of the stresses on the pallet dependent on the characteristics of the load is generated. The bending of the unit load was measured under four common support conditions, warehouse racked across the width and length, fork tine support across the width and floor stacking. Five different pallet stacking patterns were then analyzed, comparing different interlocking levels, from column stacking to fully interlocking. It was identified that interlocking the layers causes a reduction in pallet deflection of up to 53% versus column stacking, and is more significant on lower stiffness pallets. The stacking patterns and interlocking levels also presented an effect on pallet deflection, albeit only for very low stiffness pallets when supported on its weakest components. A relationship between the observed results and a ratio of load and pallet stiffness was conducted, suggesting that when the load on the pallet is not significantly high in relation to the stiffness, load bridging won’t be observed. These results provide a guideline on improving pallet design and help furthering the understanding of the load bridging effect. / Master of Science / The optimization of pallet design in today’s competitive supply chain is imperative to reduce costs and improve sustainability. With over two billion pallets in circulation in the United States, most packaged products are handled using unit loads and the interactions between the unit load components are not being considered in the pallet design process. This study aims to investigate the effect of the interlocking of layers and the pallet stacking patterns on pallet bending. This effect is part of a greater encompassing observed behavior known as load bridging, where a redistribution of the stresses on the pallet dependent on the characteristics of the load is generated. Tests were conducted to measure the pallet bending performance under common scenarios, evaluating the effect of five different pallet stacking patterns. It was identified that when the layers of a unit load are interlocked, the pallet presents lower deflection (up to 53%). A relationship between the observed results and a ratio of load and pallet stiffness was conducted, suggesting that when the load on the pallet is not significantly high in relation to the stiffness, load bridging won’t be observed. These results provide a guideline on improving pallet design and help furthering the understanding of the load bridging effect.
2

Development and validation of a numerical model for an inflatable paper dunnage bag using finite element methods

Venter, Martin Philip 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2011. / Please refer to full text to view abstract. / Imported from http://etd.sun.ac.za. / np2011

Page generated in 0.1495 seconds