• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elucidating the Mechanisms of Transposable Elements using Experimental and Bioinformatic Approaches: The hAT Superfamily of Transposable Elements in the Genome of Aedes aegypti and TE Displayer

Rooke, Rebecca 19 December 2011 (has links)
Transposable elements (TEs) are found in nearly all eukaryotic genomes and are a major driving force of genome evolution. The hAT superfamily of TEs are found in a variety of organisms, including plants, fungi, insects and animals. To date, only 14 hAT TEs in the Aedes aegypti genome have been annotated as having a hAT transposase coding sequence. In this study, extensive bioinformatic approaches have been employed to find hAT TEs that encode transposases in the A. aegypti genome. A total of six newly-identified TEs belonging to the hAT superfamily were discovered in the A. aegypti genome. Furthermore, a computer program called TE Displayer was developed to analyze TEs in genome sequences. TE Displayer detects TE-derived polymorphisms in genome datasets and presents the results on a virtual gel image. TE Displayer enables researchers to compare TE profiles in silico and provides a reference profile for experimental analyses.
2

Elucidating the Mechanisms of Transposable Elements using Experimental and Bioinformatic Approaches: The hAT Superfamily of Transposable Elements in the Genome of Aedes aegypti and TE Displayer

Rooke, Rebecca 19 December 2011 (has links)
Transposable elements (TEs) are found in nearly all eukaryotic genomes and are a major driving force of genome evolution. The hAT superfamily of TEs are found in a variety of organisms, including plants, fungi, insects and animals. To date, only 14 hAT TEs in the Aedes aegypti genome have been annotated as having a hAT transposase coding sequence. In this study, extensive bioinformatic approaches have been employed to find hAT TEs that encode transposases in the A. aegypti genome. A total of six newly-identified TEs belonging to the hAT superfamily were discovered in the A. aegypti genome. Furthermore, a computer program called TE Displayer was developed to analyze TEs in genome sequences. TE Displayer detects TE-derived polymorphisms in genome datasets and presents the results on a virtual gel image. TE Displayer enables researchers to compare TE profiles in silico and provides a reference profile for experimental analyses.

Page generated in 0.0339 seconds