• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tratamento sequencial químico-enzimático do bagaço de cana-de-açúcar e seu efeito na extração de xilana e na sacarificação da celulose residual / Chemical-enzymatic sequential treatment of sugarcane bagasse and its effect on xylan extraction and saccharification of residual cellulose

Mora, Leidy Patricia Quintero 02 August 2018 (has links)
A biomassa lignocelulósica, como o bagaço de cana-de-açúcar, tem potencial para ser usado como matéria-prima na fabricação de produtos de valor agregado, uma vez que, seus componentes estruturais podem ser separados através de pré-tratamentos e utilizados em linhas de processos. Diferentes tipos de pré-tratamentos tem sido desenvolvidos com este objetivo, e neste contexto, foi proposto um tratamento sequencial químico-enzimático (SQE) do bagaço de cana-de-açúcar com três estágios; 1) Extração alcalina a frio (CAE): realizado com 10% (m/m) de NaOH por 30 min a 25ºC, 2) Pré-tratamento sulfito alcalino em etanol (ASE): realizado com 2,5% (m/m) de NaOH e 5% (m/m) de Na2SO3 em etanol (30 %v/v), por 2 h a 120ºC e 3) Extração enzimática da hemicelulose residual (EEH): conduzida com extrato comercial de xilanase (Luminase) a 5UI/g de biomassa em tampão fosfato de sódio 50 mM, pH 8 a 50ºC, por 6 horas e 24 horas. O tratamento SQE permitiu a solubilização de 48% e 60% da hemicelulose e 86% e 84% da lignina original do bagaço, diferenças obtidas em função do tempo de extração enzimática de 6 e 24 horas, respectivamente. Os sólidos resultantes da segunda etapa do pré-tratamento (polpa-P2) e da terceira etapa (polpa-P3) foram hidrolisados com o coquetel enzimático Cellic Ctec2 (10 FPU/g de glucana) por 48h a 50ºC, pH 4,8, nas consistências de 5%, 10% e 15% m/v. A extração enzimática de hemiceluloses (terceira etapa do tratamento SQE) da polpa-P2 não contribuiu com a hidrólise de celulose. Na consistência de 5%, as polpas P2 e P3 apresentaram 95 e 94% de conversão de celulose em 24h, valores similares foram obtidos para as polpas na consistência de 10%, porém em 48h de reação. A conversão de celulose das polpas P2 e P3 em 48h, a 15% de consistência, diminuiu para 84% e 81%, respectivamente. A polpa P3, proveniente da extração enzimática das hemiceluloses por 24h, apresentou um menor valor de conversão de celulose (74%), a 15% de consistência, evidenciando-se o efeito negativo da extração adicional de hemicelulose sobre a hidrólise da celulose. Embora não tenham sido observadas diferenças significativas nas porcentagens de conversão de celulose nas polpas P2 e P3, a implementação das três etapas de pré-tratamentos possibilitou a obtenção de duas frações diferentes de hemiceluloses, que foram recuperadas por precipitação com etanol, cada uma delas com características e aplicações potenciais diferentes. A composição química das hemiceluloses extraídas do bagaço de cana as define como arabinoxilana. As condições operacionais utilizadas na primeira etapa (CAE) do tratamento SQE gerou xilanas com maiores massas molares (34.598 g/mol) e mais contaminadas com lignina (18%) comparadas às xilanas recuperadas na terceira etapa (EEH), que apresentaram massas molares entre 9.948-11.678g/mol com 1,5- 3,5% de lignina. Nestas últimas foram identificados a presença de xilooligossacarideos (XOS) como xilotriose (X3), xilotetraose (X4) e xilopentaose (X5). / Lignocellulosic biomass such as sugarcane bagasse has the potential to be used as raw material in the manufacture of value-added products, since its structural components can be separated through pre-treatments and used in process lines. Different types of pretreatments have been developed with this objective, and in this context, a sequential chemical-enzymatic treatment (SQE) of three-stage sugarcane bagasse was proposed. 1) Cold alkaline extraction (CAE): performed with 10% (w/w) NaOH for 30 min at 25ºC, 2) Alkaline sulfite etanol pre-treatment (ASE): performed with 2.5% (w/w) NaOH and 5% (w/w) Na2SO3 in ethanol (30% v/v) for 2h at 120ºC and 3) Enzymatic extraction of residual hemicellulose (EEH): Conducted with commercial extract of xylanase (Luminase) at 5UI/g biomass in 50mM sodium phosphate buffer, pH 8 at 50ºC, for 6h and 24h. The SQE treatment allowed the solubilization of 48% and 60% of the hemicellulose and 86% and 84% of the original bagasse lignin, differences obtained as a function of the enzymatic extraction time of 6 and 24 hours, respectively. The solids resulting from the second stage (pulp P2) and the third stage (pulp P3) of the pretreatment were hydrolyzed with the enzymatic cocktail Cellic Ctec2 (10FPU/g glucan) for 48h at 50ºC pH 4.8, in the consistencies of 5%, 10% and 15% m/v. The enzymatic extraction of hemicelluloses (third stage of the treatment SQA) of the pulp-P2 did not contribute to the hydrolysis of cellulose. At the consistency of 5%, pulps P2 and P3 presented 95 and 94% of cellulose conversion in 24h, similar values were obtained for those pulps in the consistency of 10%, but in 48h of reaction. The cellulose conversion of pulps P2 and P3 in 48h, at 15% consistency decreased to 84% and 81%, respectively. The pulp P3, from the enzymatic extraction of the hemicelluloses for 24h, presented a lower value of cellulose conversion (74%), at 15% of consistency, evidencing the negative effect of the additional extraction of hemicellulose on the hydrolysis of cellulose. Although no significant differences were observed in the cellulose conversion percentages in the P2 and P3 pulps, the implementation of the three pretreatment steps allowed two different fractions of hemicelluloses to be obtained, which were recovered by precipitation with ethanol, each with characteristics and potential applications. The chemical composition of the hemicelluloses extracted from the sugarcane bagasse describes them as arabinoxylan. The operating conditions used in the first stage (CAE) of the SQE treatment generated xylans with higher molar masses (34,598 g/mol) and more lignin contaminants (18%) compared to the third stage (EEH) recovered xylans, which presented molar masses between 9,948-11,678g/mol with 1.5-3.5% lignin. In the latter, the presence of xylo-oligosaccharides (XOS) such as xylotriose (X3), xylotetraose (X4) and xylopentaose (X5) were identified.
2

Tratamento sequencial químico-enzimático do bagaço de cana-de-açúcar e seu efeito na extração de xilana e na sacarificação da celulose residual / Chemical-enzymatic sequential treatment of sugarcane bagasse and its effect on xylan extraction and saccharification of residual cellulose

Leidy Patricia Quintero Mora 02 August 2018 (has links)
A biomassa lignocelulósica, como o bagaço de cana-de-açúcar, tem potencial para ser usado como matéria-prima na fabricação de produtos de valor agregado, uma vez que, seus componentes estruturais podem ser separados através de pré-tratamentos e utilizados em linhas de processos. Diferentes tipos de pré-tratamentos tem sido desenvolvidos com este objetivo, e neste contexto, foi proposto um tratamento sequencial químico-enzimático (SQE) do bagaço de cana-de-açúcar com três estágios; 1) Extração alcalina a frio (CAE): realizado com 10% (m/m) de NaOH por 30 min a 25ºC, 2) Pré-tratamento sulfito alcalino em etanol (ASE): realizado com 2,5% (m/m) de NaOH e 5% (m/m) de Na2SO3 em etanol (30 %v/v), por 2 h a 120ºC e 3) Extração enzimática da hemicelulose residual (EEH): conduzida com extrato comercial de xilanase (Luminase) a 5UI/g de biomassa em tampão fosfato de sódio 50 mM, pH 8 a 50ºC, por 6 horas e 24 horas. O tratamento SQE permitiu a solubilização de 48% e 60% da hemicelulose e 86% e 84% da lignina original do bagaço, diferenças obtidas em função do tempo de extração enzimática de 6 e 24 horas, respectivamente. Os sólidos resultantes da segunda etapa do pré-tratamento (polpa-P2) e da terceira etapa (polpa-P3) foram hidrolisados com o coquetel enzimático Cellic Ctec2 (10 FPU/g de glucana) por 48h a 50ºC, pH 4,8, nas consistências de 5%, 10% e 15% m/v. A extração enzimática de hemiceluloses (terceira etapa do tratamento SQE) da polpa-P2 não contribuiu com a hidrólise de celulose. Na consistência de 5%, as polpas P2 e P3 apresentaram 95 e 94% de conversão de celulose em 24h, valores similares foram obtidos para as polpas na consistência de 10%, porém em 48h de reação. A conversão de celulose das polpas P2 e P3 em 48h, a 15% de consistência, diminuiu para 84% e 81%, respectivamente. A polpa P3, proveniente da extração enzimática das hemiceluloses por 24h, apresentou um menor valor de conversão de celulose (74%), a 15% de consistência, evidenciando-se o efeito negativo da extração adicional de hemicelulose sobre a hidrólise da celulose. Embora não tenham sido observadas diferenças significativas nas porcentagens de conversão de celulose nas polpas P2 e P3, a implementação das três etapas de pré-tratamentos possibilitou a obtenção de duas frações diferentes de hemiceluloses, que foram recuperadas por precipitação com etanol, cada uma delas com características e aplicações potenciais diferentes. A composição química das hemiceluloses extraídas do bagaço de cana as define como arabinoxilana. As condições operacionais utilizadas na primeira etapa (CAE) do tratamento SQE gerou xilanas com maiores massas molares (34.598 g/mol) e mais contaminadas com lignina (18%) comparadas às xilanas recuperadas na terceira etapa (EEH), que apresentaram massas molares entre 9.948-11.678g/mol com 1,5- 3,5% de lignina. Nestas últimas foram identificados a presença de xilooligossacarideos (XOS) como xilotriose (X3), xilotetraose (X4) e xilopentaose (X5). / Lignocellulosic biomass such as sugarcane bagasse has the potential to be used as raw material in the manufacture of value-added products, since its structural components can be separated through pre-treatments and used in process lines. Different types of pretreatments have been developed with this objective, and in this context, a sequential chemical-enzymatic treatment (SQE) of three-stage sugarcane bagasse was proposed. 1) Cold alkaline extraction (CAE): performed with 10% (w/w) NaOH for 30 min at 25ºC, 2) Alkaline sulfite etanol pre-treatment (ASE): performed with 2.5% (w/w) NaOH and 5% (w/w) Na2SO3 in ethanol (30% v/v) for 2h at 120ºC and 3) Enzymatic extraction of residual hemicellulose (EEH): Conducted with commercial extract of xylanase (Luminase) at 5UI/g biomass in 50mM sodium phosphate buffer, pH 8 at 50ºC, for 6h and 24h. The SQE treatment allowed the solubilization of 48% and 60% of the hemicellulose and 86% and 84% of the original bagasse lignin, differences obtained as a function of the enzymatic extraction time of 6 and 24 hours, respectively. The solids resulting from the second stage (pulp P2) and the third stage (pulp P3) of the pretreatment were hydrolyzed with the enzymatic cocktail Cellic Ctec2 (10FPU/g glucan) for 48h at 50ºC pH 4.8, in the consistencies of 5%, 10% and 15% m/v. The enzymatic extraction of hemicelluloses (third stage of the treatment SQA) of the pulp-P2 did not contribute to the hydrolysis of cellulose. At the consistency of 5%, pulps P2 and P3 presented 95 and 94% of cellulose conversion in 24h, similar values were obtained for those pulps in the consistency of 10%, but in 48h of reaction. The cellulose conversion of pulps P2 and P3 in 48h, at 15% consistency decreased to 84% and 81%, respectively. The pulp P3, from the enzymatic extraction of the hemicelluloses for 24h, presented a lower value of cellulose conversion (74%), at 15% of consistency, evidencing the negative effect of the additional extraction of hemicellulose on the hydrolysis of cellulose. Although no significant differences were observed in the cellulose conversion percentages in the P2 and P3 pulps, the implementation of the three pretreatment steps allowed two different fractions of hemicelluloses to be obtained, which were recovered by precipitation with ethanol, each with characteristics and potential applications. The chemical composition of the hemicelluloses extracted from the sugarcane bagasse describes them as arabinoxylan. The operating conditions used in the first stage (CAE) of the SQE treatment generated xylans with higher molar masses (34,598 g/mol) and more lignin contaminants (18%) compared to the third stage (EEH) recovered xylans, which presented molar masses between 9,948-11,678g/mol with 1.5-3.5% lignin. In the latter, the presence of xylo-oligosaccharides (XOS) such as xylotriose (X3), xylotetraose (X4) and xylopentaose (X5) were identified.
3

Estudo do tratamento sequencial (adsor??o e eletro-oxida??o) para remedia??o de efluente sint?tico contaminado com BTX / Study of sequential treatment (adsorption and electrooxidation) for synthetic effluent remediation contaminated with BTX

Almeida, Camila Carvalho de 26 January 2015 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-04-01T00:02:28Z No. of bitstreams: 1 CamilaCarvalhoDeAlmeida_DISSERT.pdf: 3365314 bytes, checksum: 664d06a23fa954f913e630184f6ee4f7 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-04-05T22:28:56Z (GMT) No. of bitstreams: 1 CamilaCarvalhoDeAlmeida_DISSERT.pdf: 3365314 bytes, checksum: 664d06a23fa954f913e630184f6ee4f7 (MD5) / Made available in DSpace on 2016-04-05T22:28:56Z (GMT). No. of bitstreams: 1 CamilaCarvalhoDeAlmeida_DISSERT.pdf: 3365314 bytes, checksum: 664d06a23fa954f913e630184f6ee4f7 (MD5) Previous issue date: 2015-01-26 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / O presente trabalho prop?s o estudo do tratamento de um efluente sint?tico contaminado com BTX por eletro-oxida??o em batelada com o ?nodo de Ti/PbO2, e a adsor??o de BTX utilizando perlita expandida como material adsorvente, tendo como objetivo avaliar as melhores condi??es operacionais em ambas as metodologias a fim de realizar um tratamento sequencial (adsor??o e eletro-oxida??o) e obter uma maior efici?ncia na remo??o dos compostos. As condi??es operacionais avaliadas foram: temperatura, densidade de corrente aplicada e quantidade de material adsorvente, atrav?s de an?lises de UV-vis e Demanda Qu?mica de Oxig?nio (DQO). De acordo com os resultados experimentais obtidos, o tratamento eletro-oxidativo se mostrou eficiente na degrada??o dos compostos BTX (Benzeno, Tolueno e Xilenos) no efluente sint?tico em raz?o das propriedades eletrocatal?ticas do ?nodo de Ti/PbO2. A densidade de corrente aplicada e a temperatura promoveram o aumento da efici?ncia da remo??o de DQO, chegando a obter percentuais superiores a 70%. No processo de adsor??o, o aumento da temperatura n?o se mostrou um fator determinante para a remo??o da mat?ria org?nica, enquanto que o aumento na quantidade de material adsorvente levou a um acr?scimo no percentual de remo??o, obtendo 66,30% utilizando 2g de adsorvente. As condi??es operacionais selecionadas de ambos os tratamentos realizados separadamente levaram em considera??o a efici?ncia de remo??o da mat?ria org?nica, e o baixo consumo energ?tico e custos operacionais, logo, o tratamento sequencial se mostrou satisfat?rio atingindo 87,26% de remo??o de DQO utilizando a adsor??o como um pr?-tratamento. A quantifica??o do BTX atrav?s das an?lises de cromatografia gasosa ao t?rmino dos tratamentos tamb?m confirmou a efici?ncia da remo??o dos compostos org?nicos, outorgando proeminentes vantagens ao tratamento sequencial. / This paper proposed the study of the treatment of a synthetic wastewater contaminated with BTX by electro-oxidation batch with the anode of Ti/PbO2, and the adsorption of BTX using expanded perlite as adsorbent material, and to evaluate the best operating conditions both methods in order to perform a sequential treatment (adsorption and electro-oxidation) and achieve greater efficiency in the removal of the compounds. The operating conditions were measured: temperature, current density and applied amount of the adsorbent material, by UV-VIS analysis and Demand Chemical oxygen demand (COD). According to the experimental results, the electro-oxidative treatment was efficient in the degradation of the compounds BTX (benzene, toluene and xylenes) in synthetic sewage due to the electrochemical properties of the anode of Ti/PbO2. The applied current density and temperature promoted increased efficiency of COD removal, reaching obtain percentages greater than 70%. In the adsorption process, the temperature increase was not a factor in the removal of organic matter, while the increase in the amount of adsorbent material led to an increase in the percentage removal, obtaining 66.30% using 2 g of adsorbent. The selected operating conditions of both treatments performed separately take into account the removal efficiency of organic matter, and the low energy consumption and operating costs, so the sequential treatment were satisfactory reaching 87.26% of COD removal using adsorption as a pretreatment. Quantification of BTX through the analysis of gas chromatography at the end of the treatments also confirmed the removal efficiency of organic compounds, giving outstanding advantages to sequential treatment.

Page generated in 0.0953 seconds