Spelling suggestions: "subject:"1treatment plant"" "subject:"entreatment plant""
11 |
Modeling of THM and HAA formation in Missouri waters upon chlorination /Gang, Dianchen, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 373-387). Also available on the Internet.
|
12 |
Modeling of THM and HAA formation in Missouri waters upon chlorinationGang, Dianchen, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 373-387). Also available on the Internet.
|
13 |
THEORETICAL STUDY TO IMPROVE THE ENERGY BALANCE IN WASTEWATER TREATMENT PLANT : Investigation of microalgae photobioreactor in biological treatment step and open algal pond in reject water treatment in Uppsala and VästeråsMarcin, Richard, Mucha, Matej January 2015 (has links)
The self-treatment system of nature cannot handle man-caused high rate water pollution on its own, therefore cleaning in wastewater treatment plant (WWTP) is necessary to avoid eutrophication – excessive enrichment of nature by nutrients. Current technologies applied in WWTPs are old, outdating and highly energy demanding, especially biological treatment step generally requires large amount of energy for aeration of water. The alternative to current system could be microalgae treatment step, which would use green algae to consume pollutants present in the waste water, namely nitrogen, phosphorus and heavy metals. Via photosynthesis it could produce oxygen required for biological oxidation of organic matter. Furthermore carbon source is necessary for microalgal growth, this can be added to the water as CO2 produced in other industries and so decrease global greenhouse gas footprint. Co-digestion of microalgae with undigested wastewater sludge under mesophilic conditions can give a synergic effect for biogas production, therefore harvested and co-digested microalgae could contribute to positive energy balance of WWTP. Full-scale microalgae cultivation in WWTP can be achieved only when good grow is guaranteed. This is a result of many factors, particularly access to nutrients, light condition, water temperature, and pH. The goal of master’s thesis was to understand and evaluate main factors influencing algal growth using literature review, propose design of microalgae treatment step with artificial lights and evaluate energy balance, of wastewater treatment plants in Uppsala and Västerås with new design. The work proposed two different designs of microalgae treatment steps, modelled in Excel and applied to current state of municipal WWTP in Västerås and Uppsala with belonging satellite plants. The first design of microalgae activated photobioreactor (MAASPBR) aimed to replace current biological treatment step. This is possible in Västerås and Uppsala WWTPs if microalgae can consume 75% of total nitrogen (Ntot) and produce at least 13.5 and 2.4 tonne O2/day in Västerås and Uppsala respectively. The sensitivity analysis showed that minimal volumetric algal yield of 0.15 kg/m3 ,day and 0.25 kg/m3 ,day is required for Västerås and Uppsala respectively, when oxygen production rate of 1.92 kg O2/kg microalgae is assumed. Furthermore harvested and co-digested algae with sewage sludge contributes to significant increase of biogas production and negligible transportation energy increase. The second design of open algal pond for reject water (OAPRW) aims to cultivate microalgae on reject water with high concentration of nutrients, generated in sludge centrifuge. The model assumed high algal growth due to excessive amount of nutrients and increased water temperature to 24°C. Results show a possible 23% and 20% electricity saving on blowers in the biological treatment in Västerås and Uppsala respectively. Both models have positive impact on energy balance in all WWTPs, however MAASPBR has greater uncertainties, because this type of photobioreactor has not been tested unlike OAPRW which has been tested in pilot plant scale.
|
14 |
Total organic carbon (TOC) and chemical oxygen demand (COD) - Monitoring of organic pollutants in wastewaterHodzic, Elvisa January 2011 (has links)
Total organic carbon (TOC) and chemical oxygen demand (COD) are two methods used for measuring organic pollutants in wastewater. Both methods are widely used but the COD method results in production of hazardous wastes, including mercury.The purpose of this study was to validate the method TOC that will replace COD and find a factor to convert TOC to COD. In this study 26 samples were analyzed from four sewage treatment plant in the municipality of Enköping.The results show that the COD method could be replaced by the TOC method.The factor for COD/TOC was between 3.1 - 3.3. Both methods will be used in parallel until 2013 when it will be forbidden to use the COD analysis.
|
15 |
Some soil chemical and fertility aspects of the land disposal of a water treatment residue on selected soils of KwaZulu-Natal, South Africa.Buyeye, Sicelo Malizo. January 2005 (has links)
The environmental and agricultural viability of land disposal of a water treatment residue (WTR) from the Midmar Water Treatment Works of Umgeni Water was investigated by determining answers to four broad questions: 1. What effects would the application of the WTR have on plants growing on the treated soils? 2. What effects would application of the WTR have on soil chemical properties? 3. What effects would the WTR have on the soil solution composition (and by implication the quality of the groundwater)? 4. Could this material be used to reduce solubility of potential pollutants? To answer these questions, the following experiments were set up, and their respective results are reported. 1. Effects of the water treatment residue on plant growth This was investigated in a pot experiment and two field experiments. In the pot experiment five soils, two Huttons (Hu-M and Hu-T), an Inanda (la-C), a Namib (Nb-F) and a Shortlands (Sd) were used to grow perennial ryegrass ((Lolium perellne). All samples were fertilized with a basal dressing of N, P, K, Mg and S. Two lime levels were added to the Ia-C and Nb-F soils, the higher calculated to reduce acid saturation to 1%, and the lower being half of that. The WTR was applied at rates of 0, 40, 80 and 120 Mg ha-1. All treatments were in triplicate. Eight cuts in all were made of the perennial ryegrass. The dry matter (DM) yield of perennial ryegrass grown in the pot experiment increased with the WTR applied in all five soils although the highest increase was with the acidic Ia-C and Nb-F soils. The fact that the highest yields were on the strongly acid soils suggests that the liming effect of the WTR could have contributed, more so considering that lime also increased yields in these soils. It was, however, clear that no one factor was responsible for the increase in yield as the timing effect could not explain the results of the other three soils. At the two field experiments perennial ryegrass was grown at Brookdale Farm from 1998 to 2001, after which the site was re-seeded with tall fescue (Festuca arundinaceae). At Ukulinga Farm tall fescue was grown from the outset in 2000. In the two field experiments with both perennial ryegrass and tall fescue, no significant increase in yield was apparent. Importantly, however, from an environmental point of view there was no decrease in yield whether the WTR was incorporated or applied as a mulch. This was observed even at the highest rates of application, namely 1280 Mg ha-1. The growth on the mulched plots was often observed to be better than any of the other treatments, including the control. Analysis of the plant material from both pot and field experiments indicated that the WTR neither pollution of the groundwater by nitrates. However, analysis of saturated pastes from soils at both field experiments showed that the levels of nitrate were increased by application of the WTR in only the fallow plots. 4. The water treatment residue as a possible pollutant-reducing agent The effect of the water treatment residue on the sorption of P and heavy metals (Cd, Ni and Zn) was studied in the laboratory. Soils treated with WTR were equilibrated for 6 hours in 0.005 M calcium cWoride solution containing a known concentration of each element. For the coarse-textured soils, initial P concentrations ranged from 0 to 1000 mg kg-1 as opposed to 0 to 1800 mg kg-1 for the clay soils. Treatments of WTR used were 0, 80, 320 and 1280 Mg ha-1, both incubated and non-incubated. At high initial P solution concentrations, the WTR increased the extent of sorption in the coarser textured soils (Hu-T, Nb-A, Nb-F, Va and We), and decreased it in highly sorbing Av, Hu-M, la-C and la-W soils. In general though, the WTR greatly reduced soluble P. For Cd, Ni and Zn only one concentration, 50 mg kg-1, was studied using the incubated soil samples as affected by WTR rates from 0 to 1280 Mg ha-1. For all three metals, the amount sorbed increased with increase in amount of WTR for the nine soils studied, namely the Av, Hu-F, Hu-M, Hu-T, la-C, la-W, Nb-F, Va and We. In many cases the sorption was so high that more than 40 mg kg-1 of the initial concentration was removed from solution. Even for those soils with high sorption capacity e.g. the Va and We, the WTR still increased sorption by up to an average of more than 25% for Cd and more than 40% for Ni and Zn. Because for the Av and la-W soils liming also increased sorption, it could be assumed that the accompanying increase in pH as a result of the addition of WTR promoted precipitation of metals, and/or the resultant increase in negative charge increased their adsorption. These results show that where excess concentrations of soluble heavy metals may occur (especially in coarse-textured soils), and where there is concern about run-off with high P concentrations then this WTR could be considered to immobilize these elements and render them less harmful to the environment. General comments and management guidelines. Based on the results reported above, it is apparent that the WTR can be safely disposed of onto land. It has been demonstrated in the current investigation that rates of application can be as high as 1280 Mg ha-1. Rates of application to land higher than 1280 Mp; ha-1 could probably be acceptable - this was the highest rate tested in this investigation - where the residue is produced in large amounts at the plant, and land for disposal is somewhat limited. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.
|
16 |
Kraven på ägare till minireningsverk skiljer sig åt mellan olika kommunerStenbacka, Nina January 2015 (has links)
Discharge of inadequately treated waste water containing nutrients such as phosphorus and nitrogen as well as organic matter and bacteria is associated with a risk of eutrophication and contamination. The Swedish government has decided upon several Environmental Quality Objectives aiming to reduce the emissions of nutrients to water bodies. In Sweden, there are between 675 000 to 1 000 000 on-site sewage systems. Recent studies have shown that the function of small sewage treatment plants is in many cases insufficient. To prevent this regular service and supervision by a professional is needed. The focus of this study are small sewage treatment plants which use a technique where mechanical, chemical and/or biological reduction of pollutants is being used in the same facility to reduce nutrients in household wastewater. The aim of the study is to investigate how different municipalities ensure that small sewage treatment plants fulfill the requirements and reduce pollutants as efficient as the manufacturers claim. To do this, a survey was carried out, leading to a data-set that is covering more than 90 municipalities. The results show that many municipalities lack resources to ensure that small sewage treatment plants work properly. Operation and maintenance of the plants is an important issue, and should be given much more attention. Therefore the municipalities should request more documentation from the owners both before and after installation to make sure that the small sewage treatment plant can fulfill the required standard. About half of the municipalities demand that the owners acquire some kind of service agreement with the manufacturer. If small sewage treatment plants should be a wastewater treatment solution that we can rely on in the future, there is a need of evaluating and analyzing these facilities more systematically.
|
17 |
Arsenic rejection by membrane processes model development and application /Fang, Jun, January 2007 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 6, 2008) Includes bibliographical references.
|
18 |
Ultraviolet disinfection system for constructed wetlands /Ly, Jong Chan. January 1900 (has links)
Thesis (M.S.)--Humboldt State University, 2008. / Includes bibliographical references (leaves 40-44). Also available via Humboldt Digital Scholar.
|
19 |
Modeling AS(V) removal in iron oxide impregnated activated carbon columnsVaughan, Ronald L. January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 75-77). Also available on the Internet.
|
20 |
Phosphorus sorption behaviour of some South African water treatment residues /Norris, Matthew. January 2009 (has links)
Thesis (M.Sc.) - University of KwaZulu-Natal, Pietermaritzburg, 2009. / Full text also available online. Scroll down for electronic link.
|
Page generated in 0.0842 seconds