• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical Methods for Enhanced Information Security in Treaty Verification

MacGahan, Christopher, MacGahan, Christopher January 2016 (has links)
Mathematical methods have been developed to perform arms-control-treaty verification tasks for enhanced information security. The purpose of these methods is to verify and classify inspected items while shielding the monitoring party from confidential aspects of the objects that the host country does not wish to reveal. Advanced medical-imaging methods used for detection and classification tasks have been adapted for list-mode processing, useful for discriminating projection data without aggregating sensitive information. These models make decisions off of varying amounts of stored information, and their task performance scales with that information. Development has focused on the Bayesian ideal observer, which assumes com- plete probabilistic knowledge of the detector data, and Hotelling observer, which assumes a multivariate Gaussian distribution on the detector data. The models can effectively discriminate sources in the presence of nuisance parameters. The chan- nelized Hotelling observer has proven particularly useful in that quality performance can be achieved while reducing the size of the projection data set. The inclusion of additional penalty terms into the channelizing-matrix optimization offers a great benefit for treaty-verification tasks. Penalty terms can be used to generate non- sensitive channels or to penalize the model's ability to discriminate objects based on confidential information. The end result is a mathematical model that could be shared openly with the monitor. Similarly, observers based on the likelihood probabilities have been developed to perform null-hypothesis tasks. To test these models, neutron and gamma-ray data was simulated with the GEANT4 toolkit. Tasks were performed on various uranium and plutonium in- spection objects. A fast-neutron coded-aperture detector was simulated to image the particles.
2

Investigating Correlated Neutrons from Pulsed Photonuclear Interrogation for Treaty Verification Applications

Stewart, Scott 16 December 2013 (has links)
The treaty verification field is of renewed importance as continued nuclear weapons disarmament is prioritized nationally in partnership with other nuclear weapons states. This interest has led to research and development on technologies that could support future U.S. verification missions. A technology employing pulses of high-energy photons from an electron linear accelerator is one technique under consideration. High-energy photons are advantageous as an interrogation source because they penetrate thick shielding and can generate neutrons inside a measurement object. The neutrons would then multiply when presented with an object containing fissile material and allow for detection in a time domain immediately after the pulse. The purpose of this work was to develop an understanding of neutron behavior following a high-energy photon pulse and then develop a tool set to analyze data from this region to determine if a measurement object contains multiplying material, the mass of that material if present, and the moderation in the measurement object. Results indicate the tool sets developed were able to determine multiplication was present accurately in 3 out of 4 realistic verification objects. Additionally the state of the moderation in each object was able to be determined, and the mass could potentially be determined by calibrating to representative samples.

Page generated in 0.1237 seconds