• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plant productivity, radiation interception and water balance as indicators of tree-crop interactions in hedgerow intercropping systems : a Jatropha - Kikuyu case study

Ghezehei, Solomon Beyene January 2012 (has links)
The potential of agroforestry to alleviate problems related to scarcities of arable land, water, food and fuel wood is subject to understanding system functioning and implementing and managing an efficiently designed system. The objectives of this study were to understand interactions and productivity of a hedgerow intercropping system with reference to water and radiation use, and analyse system design and management scenarios in order to enhance returns. Field trials monitoring soil water, solar radiation and plant productivity were conducted during 2006-2008 at Ukulinga Research Farm (KwaZulu Natal, South Africa) using a Jatropha-Kikuyu (Pennisetum clandestinum) hedgerow intercropping system as case study. In order to extrapolate results, a process-based hedgerow intercropping model was developed by building intercropping and tree growth into the SWB-2D model. Data collected from the field trials were used to parameterise and evaluate the model, which was used to analyse hedgerow orientation and spacing to determine income scenarios of virtual system and to help develop design criteria. Allometric relationships of Jatropha using basal stem diameter and crown width as predictor variables were found to be very reliable. Stem diameter was linearly related with wood and branch proportions and inversely proportional to foliage. Neither below-ground (BG) interspecies competition nor tree spacing had any significant effects on allometry. Allometric equations were proven valid for accurate, non-destructive and rapid predictions of tree growth under various growing and non-destructive canopy management conditions. When interspecies competition was present, none of the tree spacing/arrangement options tested resulted in consistently highest tree relative growth rates (RGR). Treatments had no effect on tree RGR when high water availability and kikuyu dormancy coincided. The single-row treatment (SR) produced the shortest trees, but generally had the highest stem RGR during low rainfall periods. The standard-spacing treatment (SS) had the highest RGR during the spring and summer seasons. Jatropha-only treatment (JO) trees were the tallest and biggest. Treatments affected post-pruning tree height increase, even when rainfall was high. Length of tree-crop interface (TCI) generally decreased tree yield, especially as trees matured toward their maximum-yield age (4-5 years). SR trees showed slow response to pruning due to a high TCI. They, however, exhibited compensatory growth during May to August, when competition for water with grass was low. BG competition reduced tree nut yield more than tree biomass. Tree spacing/arrangements had no effect on tree harvest index. Soil water varied among treatments and was asymmetrically distributed across tree hedgerows. System ET was generally the highest in SR and lowest in the double-row treatment (DR). Differences were mainly due to transpiration. Treatments affected tree root distribution, which was inferred using correlations between tree RGR and soil water deficit (SWD). In JO and SR, fine tree roots were asymmetrically distributed. Their distribution in DR was essentially symmetrical. Strong vegetative RGR-SWD correlations during the 2007/08 season indicated that tree growth was mainly water-limited. Though DR and SR had comparable tree RGRs, DR produced less grass than SR. This implied DR had more intensive BG competition than SR. Interspecific competition was severe due to a lack of temporal complementarity between Jatropha and kikuyu and a shallow soil profile (0.6 m). Tree water uptake predominantly came from the 0.2 – 0.6 depth, which had about 8.6% of the total root biomass in the profile. There was no clear relationship between intercrop growth and root distribution. Radiation use efficiency of kikuyu decreased towards tree hedgerows possibly due to preceding interaction of the irradiance with tree canopy reducing photosynthetically active radiation. The effect of radiation distribution on tree-crop (T-C) interactions was mainly to magnify effects of water. Finally, tree spacing/arrangement could be manipulated to optimise radiation and soil water distribution and intercrop growth. Predictions of solar radiation distribution, profile water content and tree water use were quite accurate. In general, intercrop productivity simulations were acceptable. Intercrop growth was overestimated when rainfall was high and underestimated when rainfall was low. During model calibration, tree woody biomass, leaf area index, crown width and nut yield were predicted adequately, while leaf dry mass was overestimated. During model validation, woody biomass and crown width were simulated reasonably well. However, foliage biomass, leaf area index and nut yield were overestimated. Overall, adequacy of the model for simulating tree productivity was established. Using scenario modelling, model capabilities to facilitate design/planning and management of hedgerow intercropping systems and interpretation of model outputs were demonstrated. The model can be used to determine the T-C trade-off that yields maximum income. By selecting best-case row orientation and spacing scenarios using the model, and keeping in mind values of tree and intercrop yields, system returns can be maximised. Tree crown growth can also be predicted in order to decide on the extent and timing of pruning. The present model is applicable to any potential tree-intercrop combination. It should be linked to a nutrient simulator of SWB, its component, and appraised further by considering shade-intolerant and shade-loving crop species, along with evergreen and deciduous tree species. This provides model users with numerous T-C combinations to choose from. Various tree spacing/arrangement options can also be explored using the model in order to realise the full potential and implications of the experimental findings of this study and others. / Thesis (PhD)--University of Pretoria, 2012. / gm2014 / Plant Production and Soil Science / unrestricted
2

L'intégration spatiale et temporelle du partage des ressources dans un système agroforestiers noyers-céréales, une clef pour en comprendre la productivité ? / Spatial and temporal integration of light and water compétition in a walnut-wheat agroforestry system, a key for understanding productivity?

Talbot, Grégoire 26 October 2011 (has links)
Des mesures sur parcelles agroforestières (mélanges d'arbres et de cultures) expérimentales mettent en évidence des productivités exceptionnelles, avec des gains de plus de 30% par rapport à l'assolement de cultures pures. Nous avons mis au point et utilisé un modèle numérique dynamique en 3-D (Hi-sAFe) pour (1) tester si l'intégration spatio-temporelle du partage des ressources (lumière, eau, azote) entre espèces suffit à expliquer cette productivité et (2) évaluer l'impact de différents choix de conception ou de gestion sur cette productivité, à partir d'une compréhension des processus impliqués.Nous avons développé une méthode originale d'analyse des données simulées pour identifier et hiérarchiser les processus déterminant le rendement. Le modèle a été paramétré et calibré sur un système noyer hybride / blé dur situé sur le domaine de Restinclières (Hérault, France). Après une analyse détaillée du fonctionnement de ce système, nous avons exploré par expérimentation virtuelle sa réponse à des choix de conception: (1) traits phénologiques des espèces associées, et (2) densité et disposition des arbres sur la parcelle. Par la richesse de son comportement, Hi-sAFe permet un regard nouveau sur le fonctionnement des systèmes agroforestiers. Il éclaire la complexité du système réel. Nos résultats permettent de proposer une interprétation déterministe du rendement de chaque espèce et de la productivité totale de l'association (Land Equivalent Ratio). L'analyse des expérimentations virtuelles permet de proposer des pistes concrètes pour l'optimisation des systèmes agroforestiers. / Measurements on experimental silvoarable agroforestry plots (mixed tree-crop) showed exceptionally high productivity, with yields more than 30% higher compared to the separate crop and tree systems. We developed a 3-D process-based model (Hi-sAFe) and used it to (1) test if the spatiotemporal integration of resources sharing (light, water, nitrogen) between species could explain this productivity and (2) assess how agroforestry design or management may affect this productivity. We developed a novel method for the analysis of simulated data to identify and sort the processes determining yield by order of importance. The model was parameterized and calibrated on a hybrid walnut / durum wheat located on the Restinclières field (Hérault, France). After a detailed analysis of the functioning of this system, we explored by virtual experiments its response to design choices: (1) phenological traits of associated species, and (2) density and location of trees on the plot. The comprehensiveness of the Hi-sAFe model provides a new insight into the functioning of agroforestry systems. It clarifies the complexity of the real system. Our results put forward a deterministic interpretation of the performance of each species and of the total productivity of the crop-tree association (Land Equivalent Ratio). The analysis of virtual experiments offers practical ways for optimizing agroforestry systems.
3

Seeding Multi-omic Improvement of Apple

Bilbrey, Emma A. January 2020 (has links)
No description available.
4

Parameterization and evaluation of mechanistic crop models for estimating Urochloa brizantha cv. BRS Piatã productivity under full sun and in silvopastoral system / Parametrização e avaliação de modelos mecanísticos para estimativa da produtividade de Urochloa brizantha cv. BRS Piatã a pleno sol e em sistema silvipastoril

Bosi, Cristiam 05 February 2018 (has links)
Silvopastoral systems are a kind of agroforestry system in which trees or shrubs are combined with animals and pastures. Silvopastoral systems are important to intensify pasture production and mitigate climate change effects. However, very few studies have been performed to adapt crop models to simulate these systems. The aim of this study was to parameterize and test the mechanistic crop models APSIM and CROPGRO for estimating Urochloa brizantha cv. BRS Piatã productivity under full sun and in a silvopastoral system, to evaluate the models\' performance to simulate tree-crop interactions, and to develop tools to improve these simulations. For this purpose, four field experiments were conducted under full sun to investigate cutting management under irrigated and rainfed conditions and grazing management under rainfed conditions with high and low N supply. Another experiment was carried out in a silvopastoral system with the trees arranged in simple rows, in East-West orientation, with 15 m between rows and 2 m between plants in the rows. This experiment was conducted under grazing management and rainfed conditions with the pasture variables, microclimate and soil water content being assessed at four distances from the North row (0.00 m, 3.75 m, 7.50 m and 11.25 m). The forage mass simulations for the pasture at full sun, performed using the APSIM-Tropical Pasture model, showed good agreement between observed and estimated data (R2 between 0.82 and 0.97, d between 0.92 and 0.98, and NSE ranging from 0.72 to 0.92), while the simulations with the CROPGRO-Perennial Forage model achieved good precision (R2 between 0.65 and 0.93) and good accuracy (d from 0.86 to 0.97, and NSE from 0.60 to 0.90), for the various managements and environmental conditions. Even considering the promising performance of both models for pastures under full sun, they already needs to be tested in other locations, climate conditions, soils, and grazing or cutting intensities, to prove its accuracy and reach enough confidence. The pasture growth simulations at the silvopastoral system indicated that the APSIM-Tropical Pasture was efficient when only competition by solar radiation was considered (R2 from 0.69 to 0.88, d from 0.90 to 0.96, and NSE between 0.51 and 0.85), but inefficient when considering only competition by soil water (R2 between 0.58 and 0.85, d between 0.58 and 0.82, and NSE from -4.07 to -0.14). The CROPGRO-Perennial Forage achieved good performance on pasture growth simulation at the distances 0.00 m, 3.75 m, and 7.50 m from the trees (R2 from 0.75 to 0.90, d from 0.93 to 0.96, NSE between 0.74 and 0.85). Despite the good results, improvements should be performed in both models for simulating all factors that affect forage growth in silvopastoral systems. / Os sistemas silvipastoris são um tipo de sistema agroflorestal em que árvores ou arbustos são combinados com animais e pastagens. Os sistemas silvipastoris são importantes para a intensificação de pastagens e para a mitigação dos efeitos das mudanças climáticas. Entretanto, poucos estudos vêm sendo realizados visando à adaptação de modelos para a simulação desses sistemas. O objetivo desse estudo foi parametrizar e testar os modelos mecanísticos APSIM e CROPGRO para estimar a produtividade de Urochloa brizantha cv. BRS Piatã a pleno sol e em um sistema silvipastoril, avaliar o desempenho dos modelos para simular as interações árvore-pastagem e desenvolver ferramentas para aprimorar tais simulações. Para isso, foram conduzidos quatro experimentos de campo, a pleno sol, para avaliar diferentes manejos da pastagem: corte, em irrigado e sequeiro; e pastejo, em sequeiro e com alto ou baixo suprimento de nitrogênio. Outro experimento foi conduzido em um sistema silvipastoril com as árvores arranjadas em renques simples, com orientação Leste-Oeste, com espaçamento de 15 m entre renques e 2 m entre plantas nos renques. Esse experimento foi conduzido sob pastejo e em sequeiro, com avaliações das variáveis da pastagem, microclima e água no solo em quatro distâncias em relação ao renque Norte (0,00 m; 3,75 m; 7,50 m and 11,25 m). As estimativas de massa de forragem a pleno sol, realizadas com o modelo APSIM-Tropical Pasture, apresentaram boa concordância entre os dados observados e os estimados (R2 entre 0,82 e 0,97, d entre 0,92 e 0,98 e NSE de 0,72 a 0,92), enquanto que, as estimativas geradas pelo modelo CROPGRO-Perennial Forage alcançaram boa precisão (R2 entre 0,65 e 0,93) e boa exatidão (d entre 0,86 e 0,97 e NSE de 0,60 a 0,90), para os diferentes manejos e condições ambientais. Mesmo considerando o desempenho promissor de ambos os modelos para simular pastagens a pleno sol, para confirmar a acurácia e a eficiência destes, são necessários testes em outros locais, condições climáticas, tipos de solo e intensidades de corte ou pastejo. As simulações do crescimento da pastagem no sistema silvipastoril indicaram que o modelo APSIM-Tropical Pasture, foi eficiente quando somente a competição por radiação solar foi considerada (R2 de 0,69 a 0,88, d entre 0,90 e 0,96 e NSE de 0,51 a 0,85), mas ineficiente quando somente a competição por água no solo foi considerada (R2 entre 0,58 e 0,85, d entre 0,58 e 0,82 e NSE de -4,07 a -0,14). O modelo CROPGRO-Perennial Forage atingiu bom desempenho na simulação do crescimento da pastagem para as distâncias 0,00 m, 3,75 m e 7,50 m em relação às árvores (R2 de 0,75 a 0,90, d entre 0,93 e 0,96, NSE de 0,74 a 0,85). Apesar dos bons resultados, ambos os modelos devem ser melhorados para simular todos os fatores que afetam o crescimento de pastagens em sistemas silvipastoris.
5

Parameterization and evaluation of mechanistic crop models for estimating Urochloa brizantha cv. BRS Piatã productivity under full sun and in silvopastoral system / Parametrização e avaliação de modelos mecanísticos para estimativa da produtividade de Urochloa brizantha cv. BRS Piatã a pleno sol e em sistema silvipastoril

Cristiam Bosi 05 February 2018 (has links)
Silvopastoral systems are a kind of agroforestry system in which trees or shrubs are combined with animals and pastures. Silvopastoral systems are important to intensify pasture production and mitigate climate change effects. However, very few studies have been performed to adapt crop models to simulate these systems. The aim of this study was to parameterize and test the mechanistic crop models APSIM and CROPGRO for estimating Urochloa brizantha cv. BRS Piatã productivity under full sun and in a silvopastoral system, to evaluate the models\' performance to simulate tree-crop interactions, and to develop tools to improve these simulations. For this purpose, four field experiments were conducted under full sun to investigate cutting management under irrigated and rainfed conditions and grazing management under rainfed conditions with high and low N supply. Another experiment was carried out in a silvopastoral system with the trees arranged in simple rows, in East-West orientation, with 15 m between rows and 2 m between plants in the rows. This experiment was conducted under grazing management and rainfed conditions with the pasture variables, microclimate and soil water content being assessed at four distances from the North row (0.00 m, 3.75 m, 7.50 m and 11.25 m). The forage mass simulations for the pasture at full sun, performed using the APSIM-Tropical Pasture model, showed good agreement between observed and estimated data (R2 between 0.82 and 0.97, d between 0.92 and 0.98, and NSE ranging from 0.72 to 0.92), while the simulations with the CROPGRO-Perennial Forage model achieved good precision (R2 between 0.65 and 0.93) and good accuracy (d from 0.86 to 0.97, and NSE from 0.60 to 0.90), for the various managements and environmental conditions. Even considering the promising performance of both models for pastures under full sun, they already needs to be tested in other locations, climate conditions, soils, and grazing or cutting intensities, to prove its accuracy and reach enough confidence. The pasture growth simulations at the silvopastoral system indicated that the APSIM-Tropical Pasture was efficient when only competition by solar radiation was considered (R2 from 0.69 to 0.88, d from 0.90 to 0.96, and NSE between 0.51 and 0.85), but inefficient when considering only competition by soil water (R2 between 0.58 and 0.85, d between 0.58 and 0.82, and NSE from -4.07 to -0.14). The CROPGRO-Perennial Forage achieved good performance on pasture growth simulation at the distances 0.00 m, 3.75 m, and 7.50 m from the trees (R2 from 0.75 to 0.90, d from 0.93 to 0.96, NSE between 0.74 and 0.85). Despite the good results, improvements should be performed in both models for simulating all factors that affect forage growth in silvopastoral systems. / Os sistemas silvipastoris são um tipo de sistema agroflorestal em que árvores ou arbustos são combinados com animais e pastagens. Os sistemas silvipastoris são importantes para a intensificação de pastagens e para a mitigação dos efeitos das mudanças climáticas. Entretanto, poucos estudos vêm sendo realizados visando à adaptação de modelos para a simulação desses sistemas. O objetivo desse estudo foi parametrizar e testar os modelos mecanísticos APSIM e CROPGRO para estimar a produtividade de Urochloa brizantha cv. BRS Piatã a pleno sol e em um sistema silvipastoril, avaliar o desempenho dos modelos para simular as interações árvore-pastagem e desenvolver ferramentas para aprimorar tais simulações. Para isso, foram conduzidos quatro experimentos de campo, a pleno sol, para avaliar diferentes manejos da pastagem: corte, em irrigado e sequeiro; e pastejo, em sequeiro e com alto ou baixo suprimento de nitrogênio. Outro experimento foi conduzido em um sistema silvipastoril com as árvores arranjadas em renques simples, com orientação Leste-Oeste, com espaçamento de 15 m entre renques e 2 m entre plantas nos renques. Esse experimento foi conduzido sob pastejo e em sequeiro, com avaliações das variáveis da pastagem, microclima e água no solo em quatro distâncias em relação ao renque Norte (0,00 m; 3,75 m; 7,50 m and 11,25 m). As estimativas de massa de forragem a pleno sol, realizadas com o modelo APSIM-Tropical Pasture, apresentaram boa concordância entre os dados observados e os estimados (R2 entre 0,82 e 0,97, d entre 0,92 e 0,98 e NSE de 0,72 a 0,92), enquanto que, as estimativas geradas pelo modelo CROPGRO-Perennial Forage alcançaram boa precisão (R2 entre 0,65 e 0,93) e boa exatidão (d entre 0,86 e 0,97 e NSE de 0,60 a 0,90), para os diferentes manejos e condições ambientais. Mesmo considerando o desempenho promissor de ambos os modelos para simular pastagens a pleno sol, para confirmar a acurácia e a eficiência destes, são necessários testes em outros locais, condições climáticas, tipos de solo e intensidades de corte ou pastejo. As simulações do crescimento da pastagem no sistema silvipastoril indicaram que o modelo APSIM-Tropical Pasture, foi eficiente quando somente a competição por radiação solar foi considerada (R2 de 0,69 a 0,88, d entre 0,90 e 0,96 e NSE de 0,51 a 0,85), mas ineficiente quando somente a competição por água no solo foi considerada (R2 entre 0,58 e 0,85, d entre 0,58 e 0,82 e NSE de -4,07 a -0,14). O modelo CROPGRO-Perennial Forage atingiu bom desempenho na simulação do crescimento da pastagem para as distâncias 0,00 m, 3,75 m e 7,50 m em relação às árvores (R2 de 0,75 a 0,90, d entre 0,93 e 0,96, NSE de 0,74 a 0,85). Apesar dos bons resultados, ambos os modelos devem ser melhorados para simular todos os fatores que afetam o crescimento de pastagens em sistemas silvipastoris.

Page generated in 0.0546 seconds