• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Shedding new light on random trees

Broutin, Nicolas. January 2007 (has links)
We introduce a weighted model of random trees and analyze the asymptotic properties of their heights. Our framework encompasses most trees of logarithmic height that were introduced in the context of the analysis of algorithms or combinatorics. This allows us to state a sort of "master theorem" for the height of random trees, that covers binary search trees (Devroye, 1986), random recursive trees (Devroye, 1987; Pittel, 1994), digital search trees (Pittel, 1985), scale-free trees (Pittel, 1994; Barabasi and Albert, 1999), and all polynomial families of increasing trees (Bergeron et al., 1992; Broutin et al., 2006) among others. Other applications include the shape of skinny cells in geometric structures like k-d and relaxed k-d trees. / This new approach sheds new light on the tight relationship between data structures like trees and tries that used to be studied separately. In particular, we show that digital search trees and the tries built from sequences generated by the same memoryless source share the same stable core. This link between digital search trees and tries is at the heart of our analysis of heights of tries. It permits us to derive the height of several species of tries such as the trees introduced by de la Briandais (1959) and the ternary search trees of Bentley and Sedgewick (1997). / The proofs are based on the theory of large deviations. The first order terms of the asymptotic expansions of the heights are geometrically characterized using the Crame'r functions appearing in estimates of the tail probabilities for sums of independent random variables.
2

Shedding new light on random trees

Broutin, Nicolas January 2007 (has links)
No description available.
3

Quadtree-based processing of digital images

Naderi, Ramin 01 January 1986 (has links)
Image representation plays an important role in image processing applications, which usually. contain a huge amount of data. An image is a two-dimensional array of points, and each point contains information (eg: color). A 1024 by 1024 pixel image occupies 1 mega byte of space in the main memory. In actual circumstances 2 to 3 mega bytes of space are needed to facilitate the various image processing tasks. Large amounts of secondary memory are also required to hold various data sets. In this thesis, two different operations on the quadtree are presented. There are, in general, two types of data compression techniques in image processing. One approach is based on elimination of redundant data from the original picture. Other techniques rely on higher levels of processing such as interpretations, generations, inductions and deduction procedures (1, 2). One of the popular techniques of data representation that has received a considerable amount of attention in recent years is the quadtree data structure. This has led to the development of various techniques for performing conversions and operations on the quadtree. Klinger and Dyer (3) provide a good bibliography of the history of quadtrees. Their paper reports experiments on the degree of compaction of picture representation which may be achieved with tree encoding. Their experiments show that tree encoding can produce memory savings. Pavlidis [15] reports on the approximation of pictures by quadtrees. Horowitz and Pavidis [16] show how to segment a picture using traversal of a quadtree. They segment the picture by polygonal boundaries. Tanimoto [17] discusses distortions which may occur in quadtrees for pictures. Tanimoto [18, p. 27] observes that quadtree representation is particularly convenient for scaling a picture by powers of two. Quadtrees are also useful in graphics and animation applications [19, 20] which are oriented toward construction of images from polygons and superpositiofis of images. Encoded pictures are useful for display, especially if encoding lends itself to processing.
4

Two new parallel processors for real time classification of 3-D moving objects and quad tree generation

Majd, Farjam 01 January 1985 (has links)
Two related image processing problems are addressed in this thesis. First, the problem of identification of 3-D objects in real time is explored. An algorithm to solve this problem and a hardware system for parallel implementation of this algorithm are proposed. The classification scheme is based on the "Invariant Numerical Shape Modeling" (INSM) algorithm originally developed for 2-D pattern recognition such as alphanumeric characters. This algorithm is then extended to 3-D and is used for general 3-D object identification. The hardware system is an SIMD parallel processor, designed in bit slice fashion for expandability. It consists of a library of images coded according to the 3-D INSM algorithm and the SIMD classifier which compares the code of the unknown image to the library codes in a single clock pulse to establish its identity. The output of this system consists of three signals: U, for unique identification; M, for multiple identification; and N, for non-identification of the object. Second, the problem of real time image compaction is addressed. The quad tree data structure is described. Based on this structure, a parallel processor with a tree architecture is developed which is independent of the data entry process, i.e., data may be entered pixel by pixel or all at once. The hardware consists of a tree processor containing a tree generator and three separate memory arrays, a data transfer processor, and a main memory unit. The tree generator generates the quad tree of the input image in tabular form, using the memory arrays in the tree processor for storage of the table. This table can hold one picture frame at a given time. Hence, for processing multiple picture frames the data transfer processor is used to transfer their respective quad trees from the tree processor memory to the main memory. An algorithm is developed to facilitate the determination of the connections in the circuit.

Page generated in 0.1561 seconds