• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 19
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Overcoming the Demonic: Faith, Sin, and Redemption in Kierkegaard's <i>Fear and Trembling</i>

Sandwisch, Matthew 04 April 2011 (has links)
No description available.
2

Site productivity of poplars in Canada : relationships with soil properties and competition intensity

Pinno, Brad 15 August 2008
Site quality, or the ability of land to grow trees, is an important component for identifying the most appropriate locations for establishing plantations of fast growing tree species to meet societys demands for timber and other environmental benefits. The goal of this thesis project was to predict site quality for poplars using soil and site information in Saskatchewan, Alberta and Quebec and to examine the effect of site quality on competition control in hybrid poplar plantations in Saskatchewan.<p>The first study examined factors affecting trembling aspen productivity in the boreal shield ecozone of Quebec on till and fluvial parent materials using general map data and measured soil and site information. Relationships with productivity were stronger using measured soil and site variables for individual parent materials (R2>0.6) than using general map data only (R2<0.25). Including biological variables, such as overstory species composition, had a major impact on site quality with conifer dominance negatively impacting the growth of trembling aspen.<p>The second study examined the factors affecting trembling aspen productivity in the boreal transition ecoregion of Saskatchewan on three different soil parent materials: fluvial, lacustrine and till. Relationships with productivity were stronger using soil and site variables for individual parent materials (R2 0.48-0.58) than using agricultural capability classes or other soil properties for all plots combined (R2<0.2). For fluvial and lacustrine sites, increasing clay content and nutrient availability (e.g. pH and total N) were positively related to productivity while tree productivity was negatively related to poor drainage for till sites. <p>The third study examined the factors affecting site quality for a single hybrid poplar clone in industrial plantations in Alberta at both the local scale (between plantations) and the microsite scale (within plantations). At the local scale, foliar P and Cu concentrations, soil water availability and drainage, and Ca and Mn in the C horizon were related to hybrid poplar productivity. There were also curved relationships with productivity and soil texture in the B horizon and pH of the A horizon, indicating an optimal range for poplar growth. At the microsite scale, soil texture was the best predictor of productivity with different relationships at each site depending on where the sites were in relation to the optimal soil texture.<p>The final study examined the response of hybrid poplar plantations in Saskatchewan to interspecific competition control on a range of site productivities. Competition control greatly increased tree growth with the greatest benefit being on the best quality sites. Both water and nutrients were highly competed for between trees and weeds. In the weed-free plots, tree growth was positively related to the amount of silt and clay in the soil and foliar P concentrations. This series of studies has demonstrated that it should be possible to predict poplar productivity reasonably well using only soil and site information within limited areas across Canada. However, the important drivers of productivity varied between the regions studied and between site groupings, such as by parent material, within local areas. This information can now be used to help land managers make better decisions regarding the establishment and management of plantations of fast growing tree species, notably hybrid poplar plantations.
3

Site productivity of poplars in Canada : relationships with soil properties and competition intensity

Pinno, Brad 15 August 2008 (has links)
Site quality, or the ability of land to grow trees, is an important component for identifying the most appropriate locations for establishing plantations of fast growing tree species to meet societys demands for timber and other environmental benefits. The goal of this thesis project was to predict site quality for poplars using soil and site information in Saskatchewan, Alberta and Quebec and to examine the effect of site quality on competition control in hybrid poplar plantations in Saskatchewan.<p>The first study examined factors affecting trembling aspen productivity in the boreal shield ecozone of Quebec on till and fluvial parent materials using general map data and measured soil and site information. Relationships with productivity were stronger using measured soil and site variables for individual parent materials (R2>0.6) than using general map data only (R2<0.25). Including biological variables, such as overstory species composition, had a major impact on site quality with conifer dominance negatively impacting the growth of trembling aspen.<p>The second study examined the factors affecting trembling aspen productivity in the boreal transition ecoregion of Saskatchewan on three different soil parent materials: fluvial, lacustrine and till. Relationships with productivity were stronger using soil and site variables for individual parent materials (R2 0.48-0.58) than using agricultural capability classes or other soil properties for all plots combined (R2<0.2). For fluvial and lacustrine sites, increasing clay content and nutrient availability (e.g. pH and total N) were positively related to productivity while tree productivity was negatively related to poor drainage for till sites. <p>The third study examined the factors affecting site quality for a single hybrid poplar clone in industrial plantations in Alberta at both the local scale (between plantations) and the microsite scale (within plantations). At the local scale, foliar P and Cu concentrations, soil water availability and drainage, and Ca and Mn in the C horizon were related to hybrid poplar productivity. There were also curved relationships with productivity and soil texture in the B horizon and pH of the A horizon, indicating an optimal range for poplar growth. At the microsite scale, soil texture was the best predictor of productivity with different relationships at each site depending on where the sites were in relation to the optimal soil texture.<p>The final study examined the response of hybrid poplar plantations in Saskatchewan to interspecific competition control on a range of site productivities. Competition control greatly increased tree growth with the greatest benefit being on the best quality sites. Both water and nutrients were highly competed for between trees and weeds. In the weed-free plots, tree growth was positively related to the amount of silt and clay in the soil and foliar P concentrations. This series of studies has demonstrated that it should be possible to predict poplar productivity reasonably well using only soil and site information within limited areas across Canada. However, the important drivers of productivity varied between the regions studied and between site groupings, such as by parent material, within local areas. This information can now be used to help land managers make better decisions regarding the establishment and management of plantations of fast growing tree species, notably hybrid poplar plantations.
4

Developing adaptation strategies for forest management under uncertain future climate

Mbogga, Michael Ssekaayi 11 1900 (has links)
Bioclimate envelope models are widely used to project potential species habitat under changing climate. Conceptually, these models are also well suited to match natural resource management practices to new climatic realities, for example by guiding species choice in reforestation programs. Nevertheless, uncertainty due to a variety of causes has so far limited the practical application of bioclimate envelope models. The goal of this thesis is to examine sources of uncertainty, to reduce uncertainty if possible, and to develop methodology to systematically deal with the remaining variability in model projections. Secondly, this thesis develops practical climate change adaptation strategies for the forestry sector in western Canada. This requires answering what species should be used for reforestation for a particular site, and subsequently selecting planting stock of the species that is best adapted to current and anticipated environments. Using a novel approach to partition variance in results from multiple model runs, climate data were identified as arguably the most important source of uncertainty. Variation was primarily caused by different general circulation models, followed by different emission scenarios. Also, the method used to interpolate current weather station data was an important contributor to uncertainty at specific locations. Other sources of uncertainty were the choice of predictor variables and different bioclimate envelope modeling methods, which primarily contributed to uncertainty through interaction effects. For example, different modeling methods provided similar habitat projections for western Canada on average, but under certain climate change scenarios their results differed markedly. Given the large uncertainties in model projections, it is important to remember that ultimately, climate change adaptation has to be guided by climate trends that actually materialize. A considerable portion of this thesis therefore analyzes climate trends in western Canada over the past century. In a case study for aspen, it is shown that the combined information from multiple bioclimate envelope model runs, climate trends that have already materialized, and observed climate change impacts can make a strong case for implementing adaptation strategies in central Alberta. Amendments to aspen reforestation practices are proposed, avoiding the use of the species in areas where it is likely to lose habitat in the future, and recommending movement of planting stock so that it is reasonably well adapted under a range of future climate scenarios. / Forest Biology and Management
5

The cost of longevity: loss of sexual function in natural clones of Populus tremuloides

Ally, Dilara 05 1900 (has links)
Most clonal plants exhibit a modular structure at multiple levels. At the level of the organs, they are characterized by functional modules, such as, internodes, leaves, branches. At the level of the genetic individual (clone or genet), they possess independent evolutionary and physiological units (ramets). These evolutionary units arise through the widespread phenomenon of clonal reproduction, achieved in a variety of ways including rhizomes, stolons, bulbils, or lateral roots. The focus of this study was Populus tremuloides, trembling aspen, a dioecious tree that reproduces sexually by seed and asexually through lateral roots. Local forest patches in western populations of Populus tremuloides consisted largely of multiple genotypes. Multi-clonal patches were dominated by a single genotype, and in one population (Riske Creek) we found several patches (five out of 17) consisting of a single genotype. A second consequence of modularity is that during the repeated cycle of ramet birth, development and death, somatic mutations have the opportunity to occur. Eventually, the clone becomes a mosaic of mutant and non-mutant cell lineages. We found that neutral somatic mutations accumulated across 14 microsatellite loci at a rate of between 10^-6 and 10^-5 per locus per year. We suggest that neutral genetic divergence, under a star phylogeny model of clonal growth, is an alternative way to estimate clone age. Previous estimates of clone age couple the mean growth rate per year of shoots with the area covered by the clone. This assumes a positive linear relationship between clone age and clone size. We found, however, no repeatable pattern across our populations in terms of the relationship of either shape or size to the number of somatic changes. A final consequence of modularity is that during clonal growth, natural selection is relaxed for traits involving sexual function. This means that mutations deleterious to sexual function can accumulate, reducing the overall sexual fitness of a clone. We coupled neutral genetic divergence within clones with pollen fitness data to infer the rate and effect of mildly deleterious mutations. Mutations reduced relative sexual fitness in clonal aspen populations by about 0.12x10^-3 to 1.01x10^-3 per year. Furthermore, the decline in sexual function with clone age is evidence that clonal organisms are vulnerable to the effects of senescence.
6

Classification of trembling aspen ecosystems in British Columbia

Klinka, Karel January 2001 (has links)
This pamphlet provides a summary of a fuller report issued under the same title.
7

Classification of trembling aspen ecosystems in British Columbia. Full report.

Krestov, Pavel, Klinka, Karel, Chourmouzis, Christine, Hanel, Claudia 03 1900 (has links)
This full report presents the first approximation of vegetation classification of trembling aspen ecosystems in interior British Columbia. The classification is based on a total of 186 plots sampled during the summers of 1995, 1997 and 1998. We used multivariate and tabular methods to synthesize and classify ecosystems according to the Braun-Blanquet approach and the methods of biogeoclimatic ecosystem classification. The aspen ecosystems were classified into 15 basic vegetation units (associations or subassociations) that were grouped into four alliances. Communities of the Populus tremuloides – Mertensia paniculata, and Populus tremuloides – Elymus innovatus alliances were aligned with the boreal Picea glauca & mariana order and were distributed predominantly in the Boreal White and Black Spruce zone; communities of the Populus tremuloides – Thalictrum occidentale alliance were also aligned with the same order, but were distributed predominantly in the Sub-Boreal Spruce zone; communities of the Populus tremuloides – Symphoricarpos albus alliance were aligned with the wetter cool temperate Tsuga heterophylla order and the drier cool temperate Pseudotsuga menziesii order and were distributed in the Sub-boreal Spruce, Interior Western Hemlock, Montane Spruce, and Interior Douglas-fir zones. We describe the vegatation and environmental features of these units and present vegetation and environmental tables for individual plots and units.
8

The cost of longevity: loss of sexual function in natural clones of Populus tremuloides

Ally, Dilara 05 1900 (has links)
Most clonal plants exhibit a modular structure at multiple levels. At the level of the organs, they are characterized by functional modules, such as, internodes, leaves, branches. At the level of the genetic individual (clone or genet), they possess independent evolutionary and physiological units (ramets). These evolutionary units arise through the widespread phenomenon of clonal reproduction, achieved in a variety of ways including rhizomes, stolons, bulbils, or lateral roots. The focus of this study was Populus tremuloides, trembling aspen, a dioecious tree that reproduces sexually by seed and asexually through lateral roots. Local forest patches in western populations of Populus tremuloides consisted largely of multiple genotypes. Multi-clonal patches were dominated by a single genotype, and in one population (Riske Creek) we found several patches (five out of 17) consisting of a single genotype. A second consequence of modularity is that during the repeated cycle of ramet birth, development and death, somatic mutations have the opportunity to occur. Eventually, the clone becomes a mosaic of mutant and non-mutant cell lineages. We found that neutral somatic mutations accumulated across 14 microsatellite loci at a rate of between 10^-6 and 10^-5 per locus per year. We suggest that neutral genetic divergence, under a star phylogeny model of clonal growth, is an alternative way to estimate clone age. Previous estimates of clone age couple the mean growth rate per year of shoots with the area covered by the clone. This assumes a positive linear relationship between clone age and clone size. We found, however, no repeatable pattern across our populations in terms of the relationship of either shape or size to the number of somatic changes. A final consequence of modularity is that during clonal growth, natural selection is relaxed for traits involving sexual function. This means that mutations deleterious to sexual function can accumulate, reducing the overall sexual fitness of a clone. We coupled neutral genetic divergence within clones with pollen fitness data to infer the rate and effect of mildly deleterious mutations. Mutations reduced relative sexual fitness in clonal aspen populations by about 0.12x10^-3 to 1.01x10^-3 per year. Furthermore, the decline in sexual function with clone age is evidence that clonal organisms are vulnerable to the effects of senescence.
9

Transfer of live aspen roots as a reclamation technique - Effects of soil depth, root diameter and fine root growth on root suckering ability

Wachowski, Julia Unknown Date
No description available.
10

Developing adaptation strategies for forest management under uncertain future climate

Mbogga, Michael Ssekaayi Unknown Date
No description available.

Page generated in 0.0657 seconds