Spelling suggestions: "subject:"tricarboxylic acid cycle"" "subject:"tricarboxylic acid eycle""
1 |
Regulatory interactions of enzymes of the citric acid cycle in Bacillus subtilisMeyer, Frederik 21 January 2013 (has links)
No description available.
|
2 |
Impact of polychlorinated biphenyl- and organochlorine pesticide exposure on faecal metabolomeNäsman, Maja January 2022 (has links)
The gut microbiota plays a major part in maintaining the health of a human host. Countless of crucial functions in the body, including immune responses, cell signaling and energy metabolism to name a few, are conducted by the gut microbiota and its metabolites. Accordingly, it is of interest to gain knowledge on what can alter the gut microbiota, as these alterations by extension can give rise to adverse health effects. In this study, the impact of polychlorinated biphenyl (PCB)- and organochlorine pesticide (OCP) exposure on tricarboxylic acid (TCA) cycle metabolites, short-chain fatty acids (SCFAs) and bile acids, as well as other polar and semi-polar metabolites, which are all related to the gut microbiota, were investigated. An in vitro fermentation of faecal samples exposed to a PCB/OCP mixture was performed, and liquid chromatography-time of flight mass spectrometry (LC-qToF-MS) targeted and non-targeted approaches were applied to the extracts. The results obtained suggested that PCBs and OCPs most likely have an effect on the levels of several features of the gut metabolome with either increased or decreased levels upon exposure. Bile acids and TCA metabolites appear to follow a trend of decreasing levels, while no apparent effects could be seen for the SCFAs. Furthermore, distinct concentrations of the PCB/OCP mixture appear to induce different changes in gut microbiota functioning, which highlights the importance of performing dose-response studies when exploring biological effects of these compounds. The identification of different metabolite profiles during fermentation also allows for the possibility of further investigation of potential biomarkers to assess PCB/OCP exposure.
|
3 |
The Impact of Alveolar Type II Cell Mitochondrial Damage and Altered Energy Production on Acute Respiratory Distress Syndrome Development During Influenza A Virus InfectionDoolittle, Lauren May January 2020 (has links)
No description available.
|
4 |
Elucidating The Role of MifS-MifR Two-Component System in Regulating Pseudomonas aeruginosa PathogenicityTatke, Gorakh Digambar 04 November 2016 (has links)
Pseudomonas aeruginosa is a Gram-negative, metabolically versatile, opportunistic pathogen that exhibits a multitude of virulence factors, and is extraordinarily resistant to a gamut of clinically significant antibiotics. This ability is in part mediated by two-component systems (TCS) that play a crucial role in regulating virulence mechanisms, metabolism and antibiotic resistance. Our sequence analysis of the P. aeruginosa PAO1 genome revealed the presence of two open reading frames, mifS and mifR, which encodes putative TCS proteins, a histidine sensor kinase MifS and a response regulator MifR, respectively. This two-gene operon was found immediately upstream of the poxAB operon, where poxB encodes a chromosomal ß-lactamase, hinting at the role of MifSR TCS in regulating antibiotic resistance. However, loss of mifSR had no effect on the antibiotic resistance profile when compared to P. aeruginosa parent PAO1 strain. Subsequently, our phenotypic microarray data (BioLOG) and growth profile studies indicated the inability of mifSR mutants to grow in α-ketoglutarate (α-KG), a key tricarboxylic acid (TCA) cycle intermediate, as a sole carbon source. To date, very little is known about the physiology of P. aeruginosa when provided with α-KG as its sole carbon source and the role of MifS and MifR TCS in virulence. Importantly, in the recent years, α-KG has gained notoriety for its newly identified role as a signaling molecule in addition to its conventional role in metabolism. This led us to hypothesize that MifSR TCS is involved in α-KG utilization and virulence in P. aeruginosa. Using mifS, mifR and mifSR clean in-frame deletion strains, our study demonstrates that the MifSR TCS modulates the expression P. aeruginosa kgtP (PA5530) and pcaT (PA0229) genes encoding putative α-KG permeases. In addition, our study shows that the MifSR-regulation of these transporters requires functional sigma factor RpoN (σ54). Loss of mifSR in the presence of α-KG, resulted in differential regulation of P. aeruginosa key virulence determinants including biofilm formation, motility, cell cytoxicity and the production of pyocyanin and pyoverdine. Involvement of multiple regulators and transporters suggests the presence of an intricate circuitry in the transport of α-KG and its importance in P. aeruginosa survival. This is further supported by the α-KG-dependent MifSR regulation of multiple virulence mechanisms. Simultaneous regulation of multiple mechanisms involved in P. aeruginosa pathogenesis suggests a complex mechanism of MifSR action. Understanding the physiological cues and regulation would provide a better stratagem to fight often indomitable P. aeruginosa infections.
|
Page generated in 0.0547 seconds