Spelling suggestions: "subject:"triflate"" "subject:"triflates""
1 |
Aluminium triflate mediated reactions of cyclic enol ethersSimelane, Sandile Bongani 03 May 2012 (has links)
M.Sc. / The objective of the project described in this dissertation was to develop environmentally benign organic transformations using aluminium triflate as a Lewis acid catalyst. The activity of aluminium triflate had already been investigated in our labs in other reactions. The present project was directed towards protection and deprotection of hydroxyl functions and glycosidation of differently protected glycal substrates. A range of alcohols and phenols was successfully protected to their corresponding tetrahydropyranyl (THP) and tetrahydrofuranyl (THF) ethers using 3,4-Dihydro-2H-pyran (DHP) and 2,3-Dihydrofuran (DHF) respectively. Catalytic amounts of Al(OTf)3 were employed to drive the reaction through in the presence of dichloromethane (DCM) as a solvent. This process allowed the preparation of a structural variety of these protected ethers, including those of a protected D-ribose derivative. The THP and THF ethers so generated were hydrolysed back to their corresponding alcohols using Al(OTf)3 in the presence of methanol. In all cases, the free alcohols were isolated in excellent yields. Importantly, other acid-sensitive groups (e.g. the ring acetal and acetonide on the ribose derivative) were retained on the more complex systems. Aluminium triflate was also employed to catalyse the O-glycosidation of 3,4,6-tri-O-acetyl-Dglucal, 3,4,6-tri-O-acetyl-D-galactal and 3,4,6-tri-O-benzyl-D-glucal. Different alkyl and aromatic nucleophiles were used as glycosyl acceptors in these reactions. This aspect of the study allowed a focus on O-glycosidation leading to the synthesis of 2,3-unsaturated glycosides via Ferrier rearrangement and 2-deoxy glycosides by direct addition of alcohol nucleophiles. Interestingly, the work discovered a temperature-switched selective Ferrier rearrangement or direct addition with alcohols in certain instances. This important innovation led to the idea that this protocol may be employed in the synthesis of unsymmetrical glycal based bolaforms. Progress in this direction shall also be detailed.
|
2 |
Studies on 1,2 metallate rearrangements : application to Callystatin AWildman, Tanya January 2003 (has links)
No description available.
|
3 |
Cooperative (De-)Hydrogenation of Small MoleculesGlüer, Arne 11 December 2018 (has links)
No description available.
|
4 |
Synthesis of Nucleoside Polyphosphates and their ConjugatesMohamady Mohamady, Samy January 2013 (has links)
Nucleoside polyphosphates and their conjugates, such as nucleoside triphosphates, nucleoside tetraphosphates, sugar nucleotides, dinucleoside pyro- and higher order polyphosphates, 2’,3’-cyclic nucleoside monophosphates, and 2´-deoxynucleoside-5´-tetraphosphates in which a fluorescent label is attached to the terminal phosphate have many biological roles and have been developed into drugs. However, their synthesis remains a challenge. Several novel and efficient approaches to the synthesis of nucleoside polyphosphates and their conjugates were developed. In the first approach dinucleoside polyphosphates (NpnN’s where n = 2-4) are prepared via in situ trifluoroacetate protection and imidazolium activation of nucleoside 5’-monophosphates. This methodology was also used to prepare a substrate-intermediate analog of the reaction catalyzed by cytidine triphosphate synthase (CTPS) a recognized target for the development of antineoplastic, antiviral and antiprotozoal agents. The second approach uses sulfonylimidazolium salts as key reagents for generating highly reactive nucleotide donors. The procedure is rapid, produces a wide variety of nucleoside polyphosphates and their conjugates in high yield, does not require protection and subsequent deprotection of the nucleotide donors or acceptors and can be used to activate nucleoside mono-, di-, and triphosphates and a wide variety of acceptors. Finally an entirely new approach to the synthesis of nucleoside tetraphosphates (Np4’s), dinucleoside pentaphosphates (Np5N’s) and nucleoside tetraphosphates in which a fluorescent dye is attached to the terminal phosphate is described employing an activated form of cyclic trimetaphosphate as a novel phosphorylating agent. Attempts to prepare nucleoside triphosphates by subjecting unprotected ribonucleosides and 2’-deoxyribonucleosides to activated cyclic trimetaphosphate failed. Instead nucleoside 2’,3’-cyclic phosphates were obtained in good yield with the ribonucleoside substrates. This represents a new and convenient approach to the synthesis of this class of compounds.
|
5 |
Aluminium triflate-mediated organic synthesisCullen, Adam 20 August 2012 (has links)
Ph.D. / The work described in this thesis was directed at advancing the applications of Al(OTf)3, a metal triflate, in organic synthesis. Lewis acids play an important role in catalysis and catalyse reactions with high selectivities, unique reactivities under mild conditions. Metal triflates have become the Lewis acids of choice for acid catalysed organic transformations. A detailed literature study of metal triflates provided numerous examples of their use in organic transformations. Al(OTf)3 has been widely neglected as a Lewis acid which is contrasting to the attention the other metal triflates have received. Previous work in our laboratories had established Al(OTf)3 as an effective Lewis acid catalyst for the ring-opening of epoxides with simple alcohols and amines. The alcoholysis of epoxides provides a ready access to β-alkoxy alcohols. Whilst this reaction has been shown to occur with Al(OTf)3 as a catalyst, the established protocol calls for the use of the nucleophilic alcohol in an excess amount. Whilst this proves no problem when simple alcohols are employed as nucleophiles in the ring-opening reaction, it is a problem when more complex and expensive alcoholic nucleophiles are utilised. A modified procedure utilising Al(OTf)3 as a catalyst was developed which tolerates the use of only 1 equivalent of the nucleophilic alcohol for the ring opening reaction. The desymmetrisation of a meso-epoxide with chiral alcoholic nucleophiles was also investigated and the outcome of the diastereoselectivity of the reaction reported. The aminolysis of epoxides has been established utilising Al(OTf)3 as the Lewis acid catalyst. However, this has only been demonstrated for the ring opening of simple epoxides with simple amines. Piperazine derived β-amino alcohols with known biological activity were chosen as substrates with which to test the Al(OTf)3 catalysed aminolysis of epoxides in the synthesis of more complex β-amino alcohols. The various starting epoxides and amine nucleophiles were synthesised. During which a new approach towards the synthesis of - glycidyl amines was developed utilising a two step approach with the first step being catalysed by Al(OTf)3. It was also found that the optimal method for forming the β-amino alcohol bond was one in which the glycidyl motif was placed on the less basic heteroatom and ring opened by the more nucleophilic piperazine amine.
|
6 |
Metal triflate catalysed organic transformationsLawton, Michelle Claire 28 October 2010 (has links)
Ph.D. / The research described in this thesis was directed at advancing the application of metal triflates, Al(OTf)3 in particular, in organic synthesis, on the one hand and to contribute to the understanding of the underlying basis for their catalytic activity. The study was undertaken against the background and on the bases of a detailed literature study of metal triflates, their chemical and catalytic properties and applications thereof. Amongst others, it deals with the possible role of metal-bound water that give rise to Brønsted type acidity and that this induced Brønsted acidity may be responsible for the catalytic activity that is observed. The study was prompted by the realisation that Al(OTf)3 was largely neglected as a potential reusable catalyst. This is in marked contrast to the attention paid to other metal triflates, the rare earth metals in particular. Earlier work in this laboratory has shown that Al(OTf)3 is stable in water from which it can be recovered easily for reuse. In addition it showed promise as a Lewis acid catalyst and is relatively soluble in several organic solvents. New applications for the use of Al(OTf)3 have now been demonstrated. These include the efficient formation of acetals from aldehydes and ketones. The conversions can be carried out in an alcohol/orthoester mixture or preferably in neat orthoester. Other metal triflates, notably Sc(OTf)3 and In(OTf)3, are useful alternative catalysts. Al(OTf)3 can be easily recycled without loss of activity. This methodology also can be applied to aldehydes and ketones containing TBDMS groups without effecting deprotection of the ethers. In view of the sensitivity of the TBDMS groups to hydrolysis in the presence of triflic acid the results suggest little hydrolysis (or alcoholysis) of the metal triflates in the protic solvents used, which would generate trifluoromethanesulfonic acid as a consequence of such metal based hydrolysis. Al(OTf)3 was also found to be a good catalyst for the formation of THP ethers. It proved to be excellent for Friedel Crafts reactions using alkynes as substrates. Al(OTf)3 together with other triflates offers a mild alternative to the more traditional water sensitive Lewis acids, e.g. BF3, AlCl3 and TiCl4, which are difficult to recover and require the use of extremely dry solvents.
|
7 |
Bismuth Triflate Catalyzed Friedel-Crafts Acylations of SydnonesFisher, Jennifer Ann 05 December 2005 (has links)
No description available.
|
8 |
Routes to Acylated Sydnone EstersBalaguer, Amanda Marie 23 September 2011 (has links)
No description available.
|
9 |
Formation de liaisons C-N et C-O par catalyse de coordination ou par oxydation à l'iode hypervalent / C-N and C-O bond formation under coordination catalysis or I(III)-mediated oxydationPialat, Amélie 22 November 2013 (has links)
La fonctionnalisation directe de liaisons C-H offre une alternative plus économe en atomes et étapes que les traditionnelles méthodes de synthèse basées sur la transformation de molécules pré fonctionnalisées. Ainsi, les réactions d'amination intermoléculaire de liaisons C(sp3)-H avec des nitrènoïdes sont généralement effectuées avec des rendements et des régiosélectivités modérés et utilisent pour cela des catalyseurs coûteux. Dans ce contexte, nous avons créé de nouveaux systèmes bifonctionnels pour la formation de liaisons C-N aliphatiques catalysée par le cuivre et l'argent. Ces systèmes se sont cependant avérés inefficaces dans les conditions réactionnelles utilisées.Les travaux effectués dans le cadre de cette thèse se sont également concentrés sur la fonctionnalisation nucléophile d'anilides par oxydation à l'iode hypervalent. Grâce à cette méthodologie les triflation et triflimidation directes d'acétanilides ont été accomplies dans des conditions oxydantes douces, en présence de triflate et de triflimidate d'argent, respectivement. Ces transformations procèdent avec de bons rendements et présentent une régiosélectivité parfaite pour la position para. / The direct functionalization of C-H bonds offers an attractive, atom- and step-economical alternative to traditional methods based on functional group transformations. Intermolecular C(sp3)-H amination reactions involving nitrene intermediates usually proceed with moderate yields and regioselectivities. In this context, new bifunctional compounds were developed and applied to copper and silver-catalyzed C-N bond-forming reactions. These systems, however, have been found to be ineffective under the reaction conditions.Our research has also focused on the iodine(III)-mediated nucleophilic functionalization of anilides. The direct triflation and triflimidation of acetanilides were accomplished with the use of affordable and easy-to-handle silver(I) triflate or triflimidate respectively, under mild oxidative conditions, exhibiting perfect regioselectivity for the para position. A complete optimization of the reaction conditions and an evaluation of the scope allowed us to prepare a variety of diversely substituted aryltriflates (and nonaflates) in synthetically useful yields.
|
10 |
Utilisation du triflate de fer(III) en glycosylation sous activation micro-ondes ou en flux continu / Glycosylation promoted by iron triflate(III) under microwave irradiation or in continuous flowXolin, Amandine 06 November 2015 (has links)
Les oligosaccharides et les glycoconjugués jouent des rôles essentiels dans de nombreux processus biologiques. Cependant, leur synthèse est plus complexe que la majorité des autres biomolécules. Le principal défi réside souvent dans la formation de la liaison glycosidique. Il est donc toujours nécessaire de développer des réactions de glycosylation efficaces et totalement stéréosélectives, utilisant de nouveaux donneurs et permettant d'accéder à des structures glycosidiques à différentes échelles. Ces réactions sont d'autant plus intéressantes si elles utilisent des promoteurs peu chers, peu toxiques et peu dangereux pour l'environnement, comme des sels de fer. Dans ce cadre, la formation directe de b-glycosides de la N-acétyl-D-glucosamine par catalyse au triflate de fer(III) a été étudiée. Cette glycosylation peut être réalisée sous irradiation micro-ondes ou en flux continu. Les conditions d'activation sous micro-ondes ont ensuite été étendues à la synthèse de motifs de N-glycanes complexes. Cette synthèse consiste en une étape de polyglycosylation au triflate de fer(III), combinée à une étape d'introduction d'un lien moléculaire, via une nouvelle glycosylation ou une réaction de la chimie click. Enfin, une a-mannosylation utilisant le triflate de fer(III) a été découverte et mise au point. Cette glycosylation, réalisée sous activation micro-ondes, est totalement stéréosélective, même en l'absence de groupement participant. / Oligosaccharides and glycoconjugates are involved in numerous biological events. However, their synthesis is generally more complex than for other biomolecules. The main challenge is often the generation of the glycosidic bond. For this reason, it is still important to develop efficient and stereoselective glycosylations, which afford glycosides in significant amounts using new donors. These reactions are even more attractive if the promoter used is cheap, non-toxic and environmentally friendly, like iron salts. In this context, the direct synthesis of b-glycosides of N-acetyl-D-glucosamine using catalytic iron triflate(III) has been developed. This glycosylation can be performed under microwave irradiation or in continuous flow. The microwave-assisted conditions were then extended to the synthesis of complex N-glycan mimics. This synthesis is based on a polyglycosylation reaction using an iron(III) triflate catalysis coupled to another glycosylation or a click reaction to introduce a functionalized linker. Finally, an a-mannosylation promoted by iron(III) triflate has been developed. This glycosylation, performed under microwave irradiation, is completely stereoselective, even without neighbouring group participation.
|
Page generated in 0.0445 seconds