• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 3
  • 3
  • 1
  • Tagged with
  • 27
  • 27
  • 7
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Immunohistochemical Mapping of Angiotensin at<sub>1</sub> Receptors in the Brain

Ian Phillips, M., Shen, Leping, Richards, Elaine M., Raizada, Mohan K. 19 March 1993 (has links)
A new approach to study angiotensin receptor distribution in the brain has been taken by developing antibodies to partial sequence of the angiotensin II (AII) type-1 receptor subtype (AT1) and demonstrating the presence of receptors with immunohistochemical staining. The antibody to a portion of the 3rd cytoplasmic loop of the AT1 receptor revealed distinctive punctate immunoreactive staining on cell bodies. The cell bodies were distributed in the forebrain in paraventricular and supraoptic nuclei, the organum vasculosum lamina terminalis, median preoptic area and subfornical organ. In the brainstem, the entire locus coeruleus was stained, together with the adjacent mesencephalic and motor nuclei of the trigeminal nerve. The auditory system including the cochlear nucleus and superior olivary nuclei were stained. In the medulla, all the structures involved in blood pressure control were stained including the nucleus of the solitary tract, the 12th nerve nuclei, the rostroventral lateral area and the nucleus ambiguous. Sites where AT2 receptors are located were not stained or staining was limited to specific area such as the medial accessory nucleus of the inferior olive. Immunocytochemical staining of AT1 receptors provides a new and more precise approach to the cellular localization of AII receptors.
12

Evaluation of a Modified Infraorbital Approach for a Maxillary Nerve Block for Rhinoscopy with Nasal Biopsy of Dogs

Fizzano, Kristen Michelle 11 August 2017 (has links)
A maxillary nerve block via a modified infraorbital approach, applied before rhinoscopy and nasal biopsy, would decrease nociception, minimize cardiorespiratory anesthetic effects, and improve recoveries. In a crossover study, bupivacaine or equivalent volume of saline was administered to 8 healthy dogs via a modified infraorbital approach into each pterygopalatine region. Rhinoscopy and nasal biopsy were performed. Heart rate, blood pressure, plasma cortisol and norepinephrine concentrations, purposeful movement, and pain scores were monitored. Following a 14-day washout, dogs received the alternate treatment on the contralateral side. Blood pressures were significantly higher for the saline treatment than bupivacaine treatment. Plasma cortisol concentrations in the saline treatment were significantly higher 5 minutes after biopsy than at biopsy. No other parameters were significant. Using a maxillary nerve block via a modified infraorbital approach prior to rhinoscopy and nasal biopsy reduced procedural nociception. These findings warrant further evaluation in dogs with nasal disease.
13

The role of nerve growth factor in neuropeptide up-regulation in trigeminal ganglia neurons following irritant exposure

Wilfong, Erin R. January 2003 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains xiii, 82, [148] p. : ill. (some col.). Includes abstract. Includes bibliographical references.
14

A reliable method of tractography analysis : of DTI-data from anatomically and clinically difficult groups

Blomstedt, Johanna January 2019 (has links)
MRI is used to produce images of tissue in the body. DTI, specifically, makes it possible to track the effects of nerves where they are in the brain. This project includes a shell script and a guide for using the FMRIB Software Library, followed by StarTrack and then Trackvis in order to track difficult areas in the brain. The focus is on the trigeminal nerve (CN V). The method can be used to compare nerves in the same patient, or as a comparison to a healthy brain.
15

Inervação da musculatura mandibular de Carcharias taurus (Rafinesque, 1810) (Odontaspididae, Lamniformes, Elasmobranchii) / Innervation of Carcharias taurus (Rafinesque, 1810) mandibular musculature (Odontaspididae, Lamniformes, Elasmobranchii)

Casas, André Luis da Silva 05 October 2004 (has links)
Quinze cabeças de tubarões Carcharias taurus (Rafinesque, 1810), pertencentes à Ordem Lamniformes e Família Odontaspididae, foram utilizadas para a realização desse estudo. O material destinado à análise foi obtido junto ao Terminal de Pesca de Santos, localizado em Santos, São Paulo, e descartado pelos pescadores por não apresentar valor comercial. A dissecação das cabeças visou caracterizar os músculos mandibulares, bem como descrever sua inervação realizada pelo ramo mandibular do nervo trigêmeo. Os músculos mandibulares de C. taurus são representados por: músculo pré-orbital, músculo levantador do palatoquadrado, músculo quadrado-mandibular e músculo intermandibular. O nervo trigêmeo de C. taurus origina-se em uma porção lateral da medula oblonga e ramifica-se na órbita para originar o ramo mandibular responsável pela inervação dos músculos derivados do arco mandibular. Os ramos proximais do ramo mandibular do nervo trigêmeo inervam o músculo levantador do palatoquadrado, o músculo pré-orbital e o músculo quadrado-mandibular recebem fibras dos ramos intermediários do ramo mandibular do nervo trigêmeo e a ramificação distal do mesmo é visualizada no músculo intermandibular. / During this study were used fifteen of Carcharias taurus (Rafinesque, 1810) (Odontaspididae, Lamniformes, Elasmobranchii) shark heads. The analised material was obteined in Terminal de Pesca de Santos, located in Santos, São Paulo. The material was descarded by the fishers because it hasn´t none comercial value. The heads dissection is foccated in the caracterization of the mandibular muscles and to discrebed the mandibular branch of the trigeminal nerve innervation as well. The C. taurus mandibular muscles are represented by: muscle pré-orbital, muscle levantador do palatoquadrado, muscle quadrado-mandibular and muscle intermandibular. The origin of the trimeginal nerve of C. taurus is located in a lateral portion of the medula oblonga. In the orbita it ramificates to originate de mandibular branch that inervates the muscles which is derived from the mandibular arch. The mandibular branch of the trigeminal nerve\'s proximal branches inervetes the muscle levantador do palatoquadrado, the muscles pré-orbitall and quadrado-mandibular receives fibers from the intermediate branches of the mandibular branch of the trigeminal nerve and the distal ramification of the mandibular branch are visualised in the muscle intermandibularis.
16

Pain, motion sickness and migraine: effects on symptoms and scalp blood flow

a.granston@murdoch.edu.au, Anna Cuomo-Granston January 2009 (has links)
Migraine, a neurovascular disorder, is associated with disturbances in brain stem activity during attacks. Interictal persistence of these disturbances might increase vulnerability to recurrent attacks of migraine. To explore this possibility, effects of motion sickness and pain on migrainous symptoms and extracranial vascular reponses were investigated in 27 migraine sufferers in the headache-free interval, and 23 healthy age/sex matched controls. Symptoms of migraine and motion sickness are remarkably similar. As both maladies involve reflexes that relay in the brain stem, they most probably share the same neural circuitry. Furthermore, migraineurs are usually susceptible to motion sickness and, conversely, motion sickness-prone individuals commonly experience migraine. Participants in the present study were exposed to optokinetic stimulation (OKS), a well-established way of inducing symptoms of motion sickness in susceptible individuals. Sensitivity to painful stimulation of the head and hand was also explored. Head pain is a hallmark of a migraine attack and cutaneous allodynia has been observed elsewhere in the body during attacks. The trigeminal nerve is associated with head pain in migraine, and trigeminal activity evokes reflexes that relay in the brain stem. To stimulate the trigeminal nerve, ice was applied to the temple. To stimulate nociceptors elsewhere in the body the participant immersed their fingers and palm in ice-water. Procedures used in this study were physically stressful and probably psychologically stressful. The impact of stress in relation to the development of symptomatic and vascular responses, particularly anticipatory stress-responses, was explored. This research involved one central experiment that consisted of six experimental conditions. On separate occasions participants were exposed to optokinetic stimulation and painful stimulation of the head or limb, individually and in combination. In migraine sufferers, symptomatic responses were enhanced during all procedures involving OKS and during temple pain after OKS, in the presence of residual motion sickness. During trigeminal stimulation independent of OKS, headache initially developed followed by nausea as the procedure progressed. In contrast, symptoms barely developed in controls during any of the six procedures except for slight dizziness, self-motion and visual-illusion during conditions involving OKS, and slight nausea when the temple was painfully stimulated during OKS and during OKS alone. Trigeminal stimulation during OKS intensified nausea and headache in migraine sufferers compared to during OKS alone or limb pain during OKS. However, the remaining symptomatic ratings were not affected by temple pain during OKS, suggesting a specific association between nausea and head pain. It may be that these cardinal symptoms compound one another during a migraine attack. Enhanced symptomatic responses in migraine sufferers during the headache interval may indicate activation of hypersensitive neural pathways that mediate symptoms of motion sickness or migraine. Migraineurs found procedures generally more unpleasant, and ice-induced pain ratings more intense and unpleasant, than controls, which may further indicate hyperexcitable nociception in this group, or a difference in their criterion of discomfort. Vascular responses, particularly during OKS alone, and during painful stimulation independent of OKS, were greater in migraine sufferers than in controls. The added stress of painful stimulation during OKS appeared to boost facial blood flow in controls to approach levels obtained in migraine sufferers. Enhanced vasodilatation was observed in migraineurs prior to painful stimulation, presumably due to anticipatory anxiety. For both groups ipsilateral vascular responses were greater than contralateral responses when the hand was painfully stimulated. During limb pain before OKS asymmetry was minimal in migraine sufferers but more apparent in controls. An enhanced stress response in migraineurs may have drawn ipsilateral and contralateral responses closer together. The development of symptoms during the procedures of this study provides an insight into how symptoms might develop sequentially in a migraine attack. Once the headache is in motion, nausea and headache may mutually exacerbate one another. In turn, trigemino-vascular responses and stress appear to be associated with the migraine crisis. Given the interactive nature of symptomatic, vascular, and stress responses, it may be more effective to target multiple, rather than individual, symptoms, in prophylactic or acute chemical and psychological interventions.
17

Evidence for neuron-glia signaling in trigeminal ganglia : implication in temporomandibular joint pathology /

Thalakoti, Srikanth, January 1900 (has links)
Thesis (M.S.)--Missouri State University, 2008. / "May 2008." Includes bibliographical references (leaves 56-63). Also available online.
18

TNF-a regulation of cell signaling in trigeminal ganglion in an in vivo model of TMJ inflammation /

Damodaram, Srikanth, January 1900 (has links)
Thesis (M.S.)--Missouri State University, 2008. / "August 2008." Includes bibliographical references (leaves 101-112). Also available online.
19

Surgical reconstruction of the lingual and hypoglossal nerves in oropharyngeal cancer anterior oral cavity sensorimotor and quality of life outcomes /

Elfring, Tracy Tamiko. January 1900 (has links)
Thesis (M.Sc.)--University of Alberta, 2010. / A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Speech-Language Pathology, Department of Speech Pathology and Audiology. Title from pdf file main screen (viewed on July 25, 2010). Includes bibliographical references.
20

Inervação da musculatura mandibular de Carcharias taurus (Rafinesque, 1810) (Odontaspididae, Lamniformes, Elasmobranchii) / Innervation of Carcharias taurus (Rafinesque, 1810) mandibular musculature (Odontaspididae, Lamniformes, Elasmobranchii)

André Luis da Silva Casas 05 October 2004 (has links)
Quinze cabeças de tubarões Carcharias taurus (Rafinesque, 1810), pertencentes à Ordem Lamniformes e Família Odontaspididae, foram utilizadas para a realização desse estudo. O material destinado à análise foi obtido junto ao Terminal de Pesca de Santos, localizado em Santos, São Paulo, e descartado pelos pescadores por não apresentar valor comercial. A dissecação das cabeças visou caracterizar os músculos mandibulares, bem como descrever sua inervação realizada pelo ramo mandibular do nervo trigêmeo. Os músculos mandibulares de C. taurus são representados por: músculo pré-orbital, músculo levantador do palatoquadrado, músculo quadrado-mandibular e músculo intermandibular. O nervo trigêmeo de C. taurus origina-se em uma porção lateral da medula oblonga e ramifica-se na órbita para originar o ramo mandibular responsável pela inervação dos músculos derivados do arco mandibular. Os ramos proximais do ramo mandibular do nervo trigêmeo inervam o músculo levantador do palatoquadrado, o músculo pré-orbital e o músculo quadrado-mandibular recebem fibras dos ramos intermediários do ramo mandibular do nervo trigêmeo e a ramificação distal do mesmo é visualizada no músculo intermandibular. / During this study were used fifteen of Carcharias taurus (Rafinesque, 1810) (Odontaspididae, Lamniformes, Elasmobranchii) shark heads. The analised material was obteined in Terminal de Pesca de Santos, located in Santos, São Paulo. The material was descarded by the fishers because it hasn´t none comercial value. The heads dissection is foccated in the caracterization of the mandibular muscles and to discrebed the mandibular branch of the trigeminal nerve innervation as well. The C. taurus mandibular muscles are represented by: muscle pré-orbital, muscle levantador do palatoquadrado, muscle quadrado-mandibular and muscle intermandibular. The origin of the trimeginal nerve of C. taurus is located in a lateral portion of the medula oblonga. In the orbita it ramificates to originate de mandibular branch that inervates the muscles which is derived from the mandibular arch. The mandibular branch of the trigeminal nerve\'s proximal branches inervetes the muscle levantador do palatoquadrado, the muscles pré-orbitall and quadrado-mandibular receives fibers from the intermediate branches of the mandibular branch of the trigeminal nerve and the distal ramification of the mandibular branch are visualised in the muscle intermandibularis.

Page generated in 0.1365 seconds