• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum Chemical Feasibility Study of Methylamines as Nitrogen Precursors in Chemical Vapor Deposition

Rönnby, Karl January 2015 (has links)
The possibility of using methylamines instead of ammonia as a nitrogen precursor for the CVD of nitrides is studied using quantum chemical computations of reaction energies: reaction electronic energy (Δ𝑟𝐸𝑒𝑙𝑒𝑐) reaction enthalpy (Δ𝑟𝐻) and reaction free energy (Δ𝑟𝐺). The reaction energies were calculated for three types of reactions: Uni- and bimolecular decomposition to more reactive nitrogen species, adduct forming with trimethylgallium (TMG) and trimethylaluminum (TMA) followed by a release of methane or ethane and surface adsorption to gallium nitride for both the unreacted ammonia or methylamines or the decomposition products. The calculations for the reaction entropy and free energy were made at both STP and CVD conditions (300°C-1300°C and 50 mbar). The ab inito Gaussian 4 (G4) theory were used for the calculations of the decomposition and adduct reactions while the surface adsorptions were calculated using the Density Functional Theory method B3LYP. From the reactions energies it can be concluded that the decomposition was facilitated by the increasing number of methyl groups on the nitrogen. The adducts with mono- and dimethylamine were more favorable than ammonia and trimethylamine. 𝑁𝐻2 was found to be most readily to adsorb to 𝐺𝑎𝑁 while the undecomposed ammonia and methylamines was not willingly to adsorb.

Page generated in 0.0546 seconds