• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluating Sea-Level Rise Hazards on Coastal Archaeological Sites, Trinity Bay, Texas

Elliott, Patrick 05 1900 (has links)
This study uses the predictive modeling program Sea-Levels Affecting Marshes Model (SLAMM) to evaluate sea-level rise hazards, such as erosion and inundation, on coastal archaeological sites with a vertical rise of sea level of .98 meters from 2006 to 2100. In total 177 archaeological site locations were collected and georeferenced over GIS outputs maps of wetlands, erosion presence, surface elevation, and accretion. Wetlands data can provide useful information about characteristics of the wetland classes, which make a difference in the ability for coastal archaeological sites to combat sea level rise. Additionally, the study evaluated predicted erosion of archaeological sites by presence or absence of active erosion on a cell-by-cell basis. Elevation map outputs relative to mean tide level allowed for a calculation of individual archaeological site datums to use NOAA tidal databases to identify the potential for their inundation. Accretion maps acquired from the SLAMM run determined the potential for the archaeological site locations to combat rising sea levels and potentially provide protection from wave effects. Results show that the most significant hazard predicted to affect coastal archaeological sites is inundation. Approximately 54% of the total archaeological sites are predicted to be inundated at least half the time by 2100. The hazard of erosion, meanwhile, is expected to affect 33% of all archaeological sites by the end of the century. Although difficult to predict, the study assumes that accretion will not be able to keep pace with sea-level rise. Such findings of hazards prove that SLAMM is a useful tool for predicting potential effects of sea-level rise on coastal archaeological sites. With its ability to customize and as it is complementary, it provides itself not only an economical choice but also one that is adaptable to many scenarios.

Page generated in 0.3554 seconds