• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Real Algebraic Geometry of the Sextic Curves

Sayyary Namin, Mahsa 12 March 2021 (has links)
The major part of this thesis revolves around the real algebraic geometry of curves, especially curves of degree six. We use the topological and rigid isotopy classifications of plane sextics to explore the reality of several features associated to each class, such as the bitangents, inflection points, and tensor eigenvectors. We also study the real tensor rank of plane sextics, the construction of quartic surfaces with prescribed topology, and the avoidance locus, which is the locus of all real lines that do not meet a given plane curve. In the case of space sextics, a classical construction relates an important family of these genus 4 curves to the del Pezzo surfaces of degree one. We show that this construction simplifies several problems related to space sextics over the field of real numbers. In particular, we find an example of a space sextic with 120 totally real tritangent planes, which answers a historical problem originating from Arnold Emch in 1928. The last part of this thesis is an algebraic study of a real optimization problem known as Weber problem. We give an explanation and a partial proof for a conjecture on the algebraic degree of the Fermat-Weber point over the field of rational numbers.
2

Propriétés géométriques et arithmétiques explicites des courbes / Explicit geometric and arithmetic properties of algebraic curves

Çelik, Türkü Özlüm 31 August 2018 (has links)
Les courbes algébriques sont des objets centraux de la géométrie algébrique. Dans cette thèse, nous étudions ces objets sous différents angles de la géométrie algébrique tels que la géométrie algébrique effective et la géométrie arithmétique. Dans le premier chapitre, nous étudions les courbes non-hyperelliptiques de genre g et leurs jacobiennes liées par l’intermédiaire de diviseurs thêta caractéristiques. Ces derniers contiennent des propriétés géométriques extrinsèques qui permettent de calculer les constantes thêta. Dans le deuxième chapitre, nous nous concentrons sur les courbes hyperelliptiques de genre 2 et leur surface de Kummer associée avec une motivation cryptographique. Dans le troisième et dernier chapitre, nous étudions les revêtements doubles non-ramifiés des courbes non-hyperelliptiques de genre g pour obtenir des informations sur le p-rang. / Algebraic curves are central objects in algebraic geometry. In this thesis, we consider these objects from different angles of algebraic geometry such as computational algebraic geometry and arithmetic geometry. In the first chapter, we study non-hyperelliptic curves of genus g and their Jacobians linked via theta characteristic divisors. Such divisors provide extrinsic geometric properties which allow us to compute theta constants. In the second chapter, we focus on hyperelliptic curves of genus 2 and the associated Kummer surface with a cryptographic motivation. In the third and final chapter, we examine unramified double covers of non-hyperelliptic curves of genus g to obtain information about p-rank.

Page generated in 0.0657 seconds