• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • Tagged with
  • 20
  • 20
  • 10
  • 8
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neurochirurgie guidée par l'image visualisation mixte et quantification des déformations cérébrales peropératoires à l'aide de reconstructions stéréoscopiques de la surface corticale /

Paul, Perrine Jannin, Pierre. January 2006 (has links) (PDF)
Thèse doctorat : Médecine. Génie biologique et médical : Rennes 1 : 2006. / Bibliogr. p.187-202.
2

De la neurochirurgie guidée par l'image, au processus neurochirurgical assisté par la connaissance et l'information

Jannin, Pierre. January 2005 (has links)
Habilitation à diriger des recherches : Sciences médicales : Faculté de médecine, Rennes 1 : 2005. / Bibliogr. p. 154.
3

Vision par ordinateur extraction de primitives dans des images tridimensionnelles /

Horain, Patrick. Piquard, J.-F.. Garderet, Ph.. January 2008 (has links)
Reproduction de : Thèse de docteur-ingénieur : informatique : Grenoble, INPG : 1984. / Titre provenant de l'écran-titre. Bibliogr. p. 122-137.
4

Fusion de données et imagerie 3D en médecine

Barillot, Christian January 1999 (has links) (PDF)
Habilitation à diriger des recherches : Informatique : Rennes 1 : 1999. / Bibliogr. p.109-136.
5

Reconstruction polyédrique de scènes en trois dimensions à partir de cartes de profondeurs

Vial, Valentin January 2007 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
6

La tomodensitométrie multi détecteur dans les procédures d'hépatectomie virtuelle et de volumétrie hépatique corrélation radio chirurgicale dans 42 cas /

Malzy, Philippe. Lucidarme, Olivier January 2006 (has links) (PDF)
Thèse d'exercice : Médecine. Radiodiagnostic et imagerie médicale : Paris 12 : 2006. / Titre provenant de l'écran-titre. Bibliogr. f. 91-101.
7

Mise en correspondance et reconstruction stéréo utilisant une description structurelle des images

Skordas, Thomas Horaud, Radu. January 2008 (has links)
Reproduction de : Thèse de doctorat : informatique : Grenoble, INPG : 1988. / Titre provenant de l'écran-titre. Bibliogr. p. 149-155.
8

Amarrage de protéines flexibles en utilisant des expansions en séries de polynômes / Docking Flexible Proteins using Polynomial Expansions.

Hoffmann, Alexandre 01 February 2018 (has links)
La biologie structurale est la branche de la biologie qui étudie la structure et l'organisation spatiale des macromolécules.La biologie structurale concerne en particulier la détermination à l'échelle atomiquede la structure 3D, aux changement de conformation des macromolécules, et à la dynamique de ces structures.De nos jours, les techniques expérimentales modernes telles que la résonance magnétique nucléaire, la cristallographie aux rayons X et plus récemmentla microscopie cryoélectronique peuvent produire des cartes de densité à haute résolution, qui combinées aux informations sur la séquence d'une moléculepermettent aux biologistes de résoudre les structures 3D de la molécule à l'étude.Cependant, dans certains cas, la résolution des cartes de densité n'est pas suffisante.Dans un tel cas, on alignegénéralement des sous-unités individuelles, obtenues à haute résolution, dans la carte de densité de base résolution.Mentionnons qu'il est également également possible de déterminer la structure 3D d'un assemblage biologique en ancrant plusieurs sous-unités ensemble.C'est cependant un problème beaucoup plus difficile.Ces problèmes d'amarrage et d'alignement peuvent être formulés comme un problème d'optimisation dont la fonction de coût est écrite comme la corrélation croisée de deux autres fonctions.Les algorithmes d'ancrage originaux ont été formulés comme des problèmes de "clé et verrou", dans lesquels les protéines étaient considérées comme des corps rigides.Il est cependant naïf de considérer les macromolécules comme des corps rigides. Les protéines sont flexibles et peuventsubir de grands changements conformationnels lors de la liaison à d'autres molécules. Considérer les problèmes d'ancrage comme des problèmes de"clé et verrou" n'est donc pas suffisant.Une méthode d'ancrage flexible standard utilise donc l'approche "aligner puis affiner", qui, dans certains cas, peut omettre de bonnes conformations.Cette thèse se concentre sur deux axes principaux.Le premier axe est le développement d'une nouvelle méthode qui échantillonne de manière exhaustive les mouvements de corps rigides et les mouvements collectifs, calculés par analyse en modes propres (AMP).Nous présentons d'abord une méthode qui utilise la transformée de Fourier rapide pour échantillonner une approximation quadratique de la fonction coût. Ensuite, la méthode effectuela recherche flexible en maximisant l'approximation quadratique de la fonction de coût dans un certain domaine de recherche. Cette méthode garantit de trouver la meilleure conformation flexible.Nous présentons ensuite une version en itterative de notre algorithme, qui trouve les mouvements collectifs qui maximisent le score d'amarrage par rapport aux degrés de liberté (DDLs) du corps rigide.La méthode échantillonne de manière exhaustive à la fois les mouvements de corps rigides et les mouvements collectifs en maximisant le maximum lisse selon les DDls correspondant aux transformations rigides de la fonction coût.Les deux méthodes ont été appliquées à des problèmes d'alignement sur des exemples réels et artificiels.De plus, nous présentons un exemple dans lequel l'approche "aligner puis raffiner" n'est pas capable de trouver la bonne conformation tandis quenotre méthode peut trouver ladite conformation.Le deuxième axe est le développement d'une nouvelle extrapolation des mouvements calculés par l'AMP.Nous montrons qu'il est possible, avec des calculs minimaux, d'extrapoler les mouvements instantanés calculés par l'AMP dans le sous espaces des rotations-traslations des blocs (RTB) comme une rotationpresque pure autour d'un certain axe.Nous avons appliqué cette méthode appelée NOLB sur différents systèmes biologiques et avons pu, d'une part, récupérer des mouvements biologiquement pertinents et d'autre part démontrer que la méthode NOLB génère des structures avec une meilleure topologie qu'une méthode d'AMP linéaire. / Structural biology is a branch of molecular biology, biochemistry, and biophysics concerned with the molecular structure of macromolecules, how they acquire the structures they have,and how alterations in their structures affect their function.These molecules are a topic of interest because they serve to keep the cellsalive and functioning.Nowadays, modern experimental techniques, such as nuclear magnetic resonance (NMR), X-ray crystallography and more recently cryo-electron microscopy (cryo-EM) canproduce high resolution density maps, which combined with the information about the sequence of a molecule allows biologists to solve thethree-dimensional (3D) structures of the molecule under study. However, when studding large biological assemblies, experimental techniques are notalways able to generate density maps with a high enough resolution. In such a case, one typically fits individual sub-units, which weresolved using at a higher resolution, into the lower-resolution density map.Let us also mention that it is also possible determine the 3D structure of a biological assembly by docking several sub-units together.This is a much more difficult problem though.These docking and fitting problems can be reformulated as an optimization problem whose cost function can be written as the cross-correlation of two functions.The first fitting and docking algorithms were formulated as "lock and key" problems, in which the proteins were considered as rigid body.However, considering macromolecules, especially proteins, as rigid bodies is not realistic.Proteins are indeed flexible and can undergo large conformational changesupon binding to other molecules.Considering docking and fitting problems as "lock and key" problems is therefore not sufficient.Therefore, a standard flexible docking/fitting method first uses a six-dimensional (6D) rigid body docking/fitting algorithm and then flexibly relaxes the top docking/fitting poses.This approach will be thus refereed to as to the fit then refine approach.However, in some cases, such an approach can miss good conformations.This thesis focuses on two main axes.The first axis is the development of a new method that exhaustively samples both rigid-body and collective motions computed via normal mode analysis (NMA).We first present a method that combines the advantages of the Fourier transform (FFT)-based exhaustive search, which samples all the conformations of a system under study on a grid, with a local optimization technique thatguarantees to find the nearest optimal off-grid and flexible conformation.The algorithm first samples a quadratic approximation of a scoring function on a 6D grid. Then, the method performs the flexible search by maximizing the quadratic approximation of the cost functionwithin a certain search space.We then present a multi-step version of our algorithm, which finds the collective motions that maximize the docking score with respect to the rigid-body degrees of freedom (DOFs).The method exhaustively samples both rigid-body and collective motions by maximizing the soft maximum over the rigid body DOFs of the docking/fitting cost function.Both methods were applied to docking problems on both real and artificial example and we were able to design a benchmark in which the fit then refine approach fails at finding the correct conformation whileour method succeeds.The second axis is the development of a new extrapolation of motions computed by NMA.We show that it is possible, with minimal computations, to extrapolate the instantaneous motions computed by NMA in the the rotations-translations of blocks (RTB) subspace as an almost pure rotation around a certain axis.We applied this non-linear block (NOLB) method on various biological systems and were able to, firstly, retrieve biologically relevant motions andsecondly, to demonstrate that the NOLB method generates structures with a better topology than a linear NMA method.
9

Etude par la méthode du champ de phase à trois dimensions de la solidification dirigée dans des lames minces / Phase field study of three-dimensional directional solidification in thin samples

Ghmadh, Jihène 15 December 2014 (has links)
Nous étudions numériquement la solidification directionnelle d'un alliage binaire à base de succinonitrile. Pour cela, nous développons un code s'appuyant sur le formalisme du champ de phase adapté au cas de la croissance dans des lames minces. Les résultats numériques obtenus sont comparés qualitativement et quantitativement avec les observations expérimentales. Une bonne confirmation des lois expérimentales et de nouvelles informations sur la dynamique des microstructures sont obtenues.La direction de croissance est généralement limitée par deux axes : l'axe cristallin principal et la direction du gradient thermique. Une première partie de la thèse porte sur l'étude des effets de la désorientation de l'axe cristallin sur la direction de croissance des structures et sur leurs morphologies. Nos résultats sont directement comparés à la loi expérimentale qui donne la réponse en orientation des microstructures sur l'ensemble de leur domaine d'existence en fonction du nombre de Péclet. Nous obtenons un accord très satisfaisant entre simulation et expérience. Dans la seconde partie de la thèse, une instabilité oscillante (mode 2λ − O) est étudiée en se basant sur le diagramme de stabilité expérimental. Dans ce mode deux cellules voisines oscillent en opposition de phase en largeur et en hauteur. Nos simulations reproduisent ce mode oscillant dans des lames minces et permettent une comparaison quantitative avec les expériences. Le régime des oscillations forcées est notamment exploré pour obtenir des informations sur la réponse en fréquence du système. / We report on a numerical study of directional solidification in thin samples of succinonitrile-based dilute alloy. This thesis is based on 3D phase-field simulations. Numerical results are compared qualitatively and quantitatively with experimental observations. The comparison gives a good confirmation of the experimental laws, while providing new information on the dynamics of microstructures. Growth direction of the microstructure is constrained by two axes : the main crystal axis and the direction of the thermal gradient. Simulations allow us to test the variations of the growth direction and the microstructure stability at various misorientation angles. Our results are directly compared with the experimental law that gives the microstructure orientation response in a large domain of Péclet numbers. We obtain a good agreement, both on qualitative and quantitative grounds, between experiments and 3D simulations.In the second part of this manuscript, an oscillatory instability (2λ − O mode) is numerically studied. This mode involves oscillations of both cell width and cell tip position. This instability is reproduced in numerical simulations with the aim of allowing a fine and relevant comparison with experiments of the domain of existence and the periods of oscillation. In particular, the forced oscillation regime is explored to obtain information on the frequency response of the system.
10

Study and optimization of 2D matrix arrays for 3D ultrasound imaging / Etude et optimisation de sondes matricielles 2D pour l'imagerie ultrasonore 3D

Diarra, Bakary 11 October 2013 (has links)
L’imagerie échographique en trois dimensions (3D) est une modalité d’imagerie médicale en plein développement. En plus de ses nombreux avantages (faible cout, absence de rayonnement ionisant, portabilité) elle permet de représenter les structures anatomiques dansleur forme réelle qui est toujours 3D. Les sondes à balayage mécaniques, relativement lentes, tendent à être remplacées par des sondes bidimensionnelles ou matricielles qui sont unprolongement dans les deux directions, latérale et azimutale, de la sonde classique 1D. Cetagencement 2D permet un dépointage du faisceau ultrasonore et donc un balayage 3D del’espace. Habituellement, les éléments piézoélectriques d’une sonde 2D sont alignés sur unegrille et régulièrement espacés d’une distance (en anglais le « pitch ») soumise à la loi del’échantillonnage spatial (distance inter-élément inférieure à la demi-longueur d’onde) pour limiter l’impact des lobes de réseau. Cette contrainte physique conduit à une multitude d’éléments de petite taille. L’équivalent en 2D d’une sonde 1D de 128 éléments contient128x128=16 384 éléments. La connexion d’un nombre d’éléments aussi élevé constitue unvéritable défi technique puisque le nombre de canaux dans un échographe actuel n’excède querarement les 256. Les solutions proposées pour contrôler ce type de sonde mettent en oeuvredu multiplexage ou des techniques de réduction du nombre d’éléments, généralement baséessur une sélection aléatoire de ces éléments (« sparse array »). Ces méthodes souffrent dufaible rapport signal à bruit du à la perte d’énergie qui leur est inhérente. Pour limiter cespertes de performances, l’optimisation reste la solution la plus adaptée. La première contribution de cette thèse est une extension du « sparse array » combinéeavec une méthode d’optimisation basée sur l’algorithme de recuit simulé. Cette optimisation permet de réduire le nombre nécessaire d’éléments à connecter en fonction des caractéristiques attendues du faisceau ultrasonore et de limiter la perte d’énergie comparée à la sonde complète de base. La deuxième contribution est une approche complètement nouvelle consistant à adopter un positionnement hors grille des éléments de la sonde matricielle permettant de supprimer les lobes de réseau et de s’affranchir de la condition d’échantillonnage spatial. Cette nouvelles tratégie permet d’utiliser des éléments de taille plus grande conduisant ainsi à un nombre d’éléments nécessaires beaucoup plus faible pour une même surface de sonde. La surface active de la sonde est maximisée, ce qui se traduit par une énergie plus importante et donc unemeilleure sensibilité. Elle permet également de balayer un angle de vue plus important, leslobes de réseau étant très faibles par rapport au lobe principal. Le choix aléatoire de la position des éléments et de leur apodization (ou pondération) reste optimisé par le recuit simulé.Les méthodes proposées sont systématiquement comparées avec la sonde complète dansle cadre de simulations numériques dans des conditions réalistes. Ces simulations démontrent un réel potentiel pour l’imagerie 3D des techniques développées. Une sonde 2D de 8x24=192 éléments a été construite par Vermon (Vermon SA, ToursFrance) pour tester les méthodes de sélection des éléments développées dans un cadreexpérimental. La comparaison entre les simulations et les résultats expérimentaux permettentde valider les méthodes proposées et de prouver leur faisabilité. / 3D Ultrasound imaging is a fast-growing medical imaging modality. In addition to its numerous advantages (low cost, non-ionizing beam, portability) it allows to represent the anatomical structures in their natural form that is always three-dimensional. The relativelyslow mechanical scanning probes tend to be replaced by two-dimensional matrix arrays that are an extension in both lateral and elevation directions of the conventional 1D probe. This2D positioning of the elements allows the ultrasonic beam steering in the whole space. Usually, the piezoelectric elements of a 2D array probe are aligned on a regular grid and spaced out of a distance (the pitch) subject to the space sampling law (inter-element distancemust be shorter than a mid-wavelength) to limit the impact of grating lobes. This physical constraint leads to a multitude of small elements. The equivalent in 2D of a 1D probe of 128elements contains 128x128 = 16,384 elements. Connecting such a high number of elements is a real technical challenge as the number of channels in current ultrasound scanners rarely exceeds 256. The proposed solutions to control this type of probe implement multiplexing or elements number reduction techniques, generally using random selection approaches (« spars earray »). These methods suffer from low signal to noise ratio due to the energy loss linked to the small number of active elements. In order to limit the loss of performance, optimization remains the best solution. The first contribution of this thesis is an extension of the « sparse array » technique combined with an optimization method based on the simulated annealing algorithm. The proposed optimization reduces the required active element number according to the expected characteristics of the ultrasound beam and permits limiting the energy loss compared to the initial dense array probe.The second contribution is a completely new approach adopting a non-grid positioningof the elements to remove the grating lobes and to overstep the spatial sampling constraint. This new strategy allows the use of larger elements leading to a small number of necessaryelements for the same probe surface. The active surface of the array is maximized, whichresults in a greater output energy and thus a higher sensitivity. It also allows a greater scansector as the grating lobes are very small relative to the main lobe. The random choice of the position of the elements and their apodization (or weighting coefficient) is optimized by the simulated annealing.The proposed methods are systematically compared to the dense array by performing simulations under realistic conditions. These simulations show a real potential of the developed techniques for 3D imaging.A 2D probe of 8x24 = 192 elements was manufactured by Vermon (Vermon SA, Tours,France) to test the proposed methods in an experimental setting. The comparison between simulation and experimental results validate the proposed methods and prove their feasibility. / L'ecografia 3D è una modalità di imaging medicale in rapida crescita. Oltre ai vantaggiin termini di prezzo basso, fascio non ionizzante, portabilità, essa permette di rappresentare le strutture anatomiche nella loro forma naturale, che è sempre tridimensionale. Le sonde ascansione meccanica, relativamente lente, tendono ad essere sostituite da quelle bidimensionali che sono una estensione in entrambe le direzioni laterale ed azimutale dellasonda convenzionale 1D. Questo posizionamento 2D degli elementi permette l'orientamentodel fascio ultrasonico in tutto lo spazio. Solitamente, gli elementi piezoelettrici di una sondamatriciale 2D sono allineati su una griglia regolare e separati da una distanza (detta “pitch”) sottoposta alla legge del campionamento spaziale (la distanza inter-elemento deve esseremeno della metà della lunghezza d'onda) per limitare l'impatto dei lobi di rete. Questo vincolo fisico porta ad una moltitudine di piccoli elementi. L'equivalente di una sonda 1D di128 elementi contiene 128x128 = 16.384 elementi in 2D. Il collegamento di un così grandenumero di elementi è una vera sfida tecnica, considerando che il numero di canali negliecografi attuali supera raramente 256. Le soluzioni proposte per controllare questo tipo disonda implementano le tecniche di multiplazione o la riduzione del numero di elementi, utilizzando un metodo di selezione casuale (« sparse array »). Questi metodi soffrono di unbasso rapporto segnale-rumore dovuto alla perdita di energia. Per limitare la perdita di prestazioni, l’ottimizzazione rimane la soluzione migliore. Il primo contributo di questa tesi è un’estensione del metodo dello « sparse array » combinato con un metodo di ottimizzazione basato sull'algoritmo del simulated annealing. Questa ottimizzazione riduce il numero degli elementi attivi richiesto secondo le caratteristiche attese del fascio di ultrasuoni e permette di limitare la perdita di energia.Il secondo contributo è un approccio completamente nuovo, che propone di adottare un posizionamento fuori-griglia degli elementi per rimuovere i lobi secondari e per scavalcare il vincolo del campionamento spaziale. Questa nuova strategia permette l'uso di elementi piùgrandi, riducendo così il numero di elementi necessari per la stessa superficie della sonda. La superficie attiva della sonda è massimizzata, questo si traduce in una maggiore energia equindi una maggiore sensibilità. Questo permette inoltre la scansione di un più grande settore,in quanto i lobi secondari sono molto piccoli rispetto al lobo principale. La scelta casualedella posizione degli elementi e la loro apodizzazione viene ottimizzata dal simulate dannealing. I metodi proposti sono stati sistematicamente confrontati con la sonda completaeseguendo simulazioni in condizioni realistiche. Le simulazioni mostrano un reale potenzialedelle tecniche sviluppate per l'imaging 3D.Una sonda 2D di 8x24 = 192 elementi è stata fabbricata da Vermon (Vermon SA, ToursFrance) per testare i metodi proposti in un ambiente sperimentale. Il confronto tra lesimulazioni e i risultati sperimentali ha permesso di convalidare i metodi proposti edimostrare la loro fattibilità.

Page generated in 0.0657 seconds