• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 211
  • 6
  • 2
  • Tagged with
  • 252
  • 252
  • 212
  • 212
  • 209
  • 138
  • 133
  • 132
  • 88
  • 48
  • 45
  • 41
  • 41
  • 40
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Correlates of risky sexual behavior among adolescents in the United States: A secondary analysis of the 2007 Youth Risk Behavior Survey (YRBS).

January 2011 (has links)
acase@tulane.edu
62

Continued health care in the home for patients with heart disease

January 1974 (has links)
acase@tulane.edu
63

A decision analytic approach for evaluating water reuse in India.

January 2007 (has links)
acase@tulane.edu
64

A cross-sectional study of self-rated health with multiple populations in the state of Louisiana.

January 2009 (has links)
acase@tulane.edu
65

Deactivation of Endocrine Disrupting Compounds in Wastewater by Ferrate(VI) Oxidant

January 2013 (has links)
In recent years exposure to endocrine-disrupting chemicals (EDCs) in humans and wildlife has become an increasing concern. These compounds have been found ubiquitously in the environment and are suspected to induce adverse effects on the health of aquatic organisms. The results of health effects due to EDCs are clearly presented in many aquatic organisms, such as the feminization of male fish and a near extinction of some species. No clear effects on human health have been documented at this time. The major sources of these contaminants in the environment are discharges from wastewater treatment plants (WWTP) and diffuse pollution. Conventional wastewater treatment processes are not designed to remove such emerging pollutants and removal efficiency depends on many factors, including treatment technology and pollutant species. Passage through WWTPs and changes due to treatment technologies lead to detection of minute concentrations of EDCs in water downstream from discharge points. In New Orleans, Louisiana, discharge from its East Bank WWTP is being considered for potential reuse for wetland restoration. Therefore, effluents must be treated adequately to prevent adverse effects on the natural biota. Since effluents from wastewater treatment plants using conventional technologies may prove potentially unsafe for the environment due to the presence of EDCs, improved and/or new treatment processes for removal of these contaminants are needed. Ferrate (Fe+6) is known as an alternative oxidant for the treatment of wastewater that can be used as an oxidizing, disinfectant, and/or coagulating agent. Because of its redox potential, ferrate has been used as a disinfection agent and has been reported as a tool for enhanced treatment to remove many micropollutants without producing undesirable disinfection byproducts in contrast to other disinfection processes. Recent research has noted the ability of ferrate to deactivate a wide range of EDCs present in wastewater effluents. The negative effect of effluent's soluble organic matter on ferrate has been reported and higher doses of ferrate may be needed to obtain desired effluent quality. This study found that aerobic biological treatment processes reduce more than half of EDCs in wastewater and that free chlorine disinfection increases estrogenic activity in discharged effluent. Higher organic content in wastewater results in increased ferrate demand. The optimum ferrate dosage to deactivate EDCs in lab scale is 6 ppm, and a dosage of 8 ppm is possibly the operational optimum dose. pH neutralization by concentrated sulfuric acid was not found to affect EDCs deactivation efficiency by ferrate when added at the end of designed contact time. Ferrate was observed to have a high oxidation rate in the first10 minutes after application into wastewater and then degraded to other iron states, such as iron III. Higher oxidation rates can be obtained when more organics are present in wastewater as TOC. Higher dosages required longer oxidation reaction times. Ferrate was observed to generate fewer disinfection byproducts as compared to chlorine. Haloacetic acids in ferrate-treated effluent are generated from organics in wastewater and reactions with residual hypochlorite from the incomplete ferrate synthesis process. The reduction of trihalomethanes may be related to EDCs deactivation by ferrate. Because this study was performed on a lab scale, assessment of onsite production and application of ferrate is required to determine the feasibility of the ferrate treatment process at a full-scale treatment plant and to optimize required dosage. / acase@tulane.edu
66

The development and management of hospitals in the western region of Saudi Arabia

January 1982 (has links)
Abstract Not Available / acase@tulane.edu
67

Design of an inhalation chamber to test the effects of uncombusted diesel vapor on mice.

January 1981 (has links)
acase@tulane.edu
68

A determination of administrative job requirements and associated duty performance effectiveness as perceived by health care administrators in the Army Medical Department

January 1980 (has links)
The purpose of this research study was to determine: (1) the selected job-required activities and (2) the duty performance effectiveness associated with those activities as perceived by Medical Service Corps officers in the United States Army Medical Department who had received a Master's deg / acase@tulane.edu
69

Decolorization of textile wastewater using peat-enhanced activated sludge process.

January 2003 (has links)
acase@tulane.edu
70

A determination of differences between students in short-term and long-term pediatric nurse practitioner/associate programs

January 1978 (has links)
acase@tulane.edu

Page generated in 0.3046 seconds