• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Outage Management Via Powerline Communication Based Automated Meter Reading Systems

Venganti, Thirupathi 08 May 2004 (has links)
In many outage management systems, customer trouble calls have been used as the primary source of outages for distribution level outages. However the information from the trouble calls is not completely reliable as they lead to problems like okay-on-arrival reports, over escalation and extended outage times for the customers. But with the recent developments in communication and information technologies, utilities started to adopt Automated Meter Reading systems for their operational needs. In this thesis, an algorithm is developed and implemented that makes efficient use information available from the customers and powerline communication based AMR systems for outages. The work has taken advantage of the polling feature of powerline based AMR systems to identify the scope of the outage. The polling procedure uses the on demand read feature of the AMR systems that allows the utility to communicate directly with the customers. The meters in the neighborhood of the trouble calls are polled to identify the affected customers and the outages are located by back tracking to common point. In the first part of the algorithm, the distribution system is modeled as a tree and the meters are strategically polled based on the customers reporting the outages. The outage areas are identified and escalated to find the actual outage location. The crew can be directed to the outage scene to fix the cause of the outage. The algorithm discusses the rules to identify single outages, single customer outages and multiple outages. The algorithm was tested on different test systems representing distribution systems of various sizes. The algorithm is tested for different outage scenarios for all the test cases.
2

Trouble call analysis for single and multiple outages in radial distribution feeders

Subedi, Laxman January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Sanjoy Das / Anil Pahwa / Outage management describes system utilized by electric distribution utilities to help restore power in event of an outage. The complexity of outage management system employed by different utilities to determine the location of fault could differ. First step of outage management is to know where the problem is. Utilities typically depend on customers to call and inform them of the problem by entering their addresses. After sufficient calls are received, the utility is able to pinpoint the location of the outage. This part of outage management is called trouble call analysis. In event of fault in a feeder of a radial distribution system, the upstream device or the device that serves to protect that particular zone activates and opens the circuit. This particular device is considered as the operated protective device. The knowledge of the activated protective device can help locate the fault. Repair crews could be sent to that particular location to carry out power restoration efforts. The main objective of this work is to study model of distribution system that could utilize the network topology and customer calls to predict the location of the operated protective device. Such prediction would be based on the knowledge of the least amount of variables i.e. network topology and customer calls. Radial distribution systems are modeled using the immune system algorithm and test cases with trouble calls are simulated in MATLAB to test the effectiveness of the proposed technique. Also, the proposed technique is tested on an actual feeder circuit with real call scenarios to verify against the known fault locations.

Page generated in 0.0441 seconds