• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tailoring the Acoustic Properties of Truss-Core Sandwich Structure

Lee, Richard 20 November 2012 (has links)
Undesirable cabin noise has an adverse physiological effect on passengers and crews in an aircraft. In order to reduce the noise level, a passive approach using a truss-core sandwich (TCS) panel as a sound insulator is proposed. Design guidelines and analysis methodologies were developed in order to explore the vibro-acoustic characteristics of TCS structure. Its sound isolation properties can be thereby assessed. Theoretical analyses show that the transmission-loss and sound radiation properties of a TCS structure can be represented by the root-mean-square velocity of its surface, and a beam structure analysis is sufficient to reveal many of the important aspects of TCS panel design. Using finite element analysis, a sensitivity study was performed to create design guidelines for TCS structures. Transmission-loss experiments show that the analytical and numerical analyses correctly predict the trend of TCS structure’s vibro-acoustic performance.
2

Tailoring the Acoustic Properties of Truss-Core Sandwich Structure

Lee, Richard 20 November 2012 (has links)
Undesirable cabin noise has an adverse physiological effect on passengers and crews in an aircraft. In order to reduce the noise level, a passive approach using a truss-core sandwich (TCS) panel as a sound insulator is proposed. Design guidelines and analysis methodologies were developed in order to explore the vibro-acoustic characteristics of TCS structure. Its sound isolation properties can be thereby assessed. Theoretical analyses show that the transmission-loss and sound radiation properties of a TCS structure can be represented by the root-mean-square velocity of its surface, and a beam structure analysis is sufficient to reveal many of the important aspects of TCS panel design. Using finite element analysis, a sensitivity study was performed to create design guidelines for TCS structures. Transmission-loss experiments show that the analytical and numerical analyses correctly predict the trend of TCS structure’s vibro-acoustic performance.

Page generated in 0.0338 seconds