• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Atat1/Mec-17-Myosin II axis controls ciliogenesis

Rao, Yanhua January 2013 (has links)
<p>Primary cilia are evolutionarily conserved, acetylated microtubule-based organelles that transduce mechanical and chemical signals. Primary cilium assembly is tightly controlled and its deregulation causes a spectrum of human diseases. Formation of primary cilium is a collaborative effort of multiple cellular machineries, including microtubule, actin network and membrane trafficking. How cells coordinate these components to construct the primary cilia remains unclear. In this dissertation research, we utilized a combination of cell biology, biochemistry and light microscopy technologies to tackle the enigma of primary cilia formation, with particular focus on isoform-specific roles of non-muscle myosin II family members. We found that myosin IIB (Myh10) is required for cilium formation. In contrast, myosin IIA (Myh9) suppresses cilium formation. In Myh10 deficient cells, Myh9 inactivation significantly restores cilia formation. Myh10 antagonizes Myh9 and increases actin dynamics, permitting pericentrosomal preciliary complex formation required for cilium assembly. Importantly, Myh10 is upregulated upon serum starvation-induced ciliogenesis and this induction requires Atat1/Mec-17, the microtubule acetyltransferase. Our findings suggest that Atat1/Mec17-mediated microtubule acetylation is coupled to Myh10 induction, whose accumulation overcomes the Myh9-dependent actin cytoskeleton, thereby activating cilium formation. Thus, Atat1/Mec17 and myosin II coordinate microtubules and the actin cytoskeleton to control primary cilium biogenesis.</p> / Dissertation
2

The role of tubulin acetylation in cardiac fibroblasts

Mügge, Felicitas 27 September 2018 (has links)
No description available.
3

Vliv suplementace karotenoidy a oxidačního stresu na morfologii, kvalitu spermií a spermatogenezi u zebřičky pestré / Interactive effects of carotenoid supplementation and oxidative stress on sperm morphology, sperm quality and spermatogenesis in the Zebra finches

Bílková, Karolína January 2018 (has links)
The phenotype-linked fertility hypothesis predicts that both, male carotenoid-based sexual ornamentation and their spermatozoa are phenotypically plastic and may be co-affected by the environment. One of the factors affecting their phenotype may be oxidative stress and the ability of organism to eliminate its effect. Oxidative stress may reduce sperm quality because sperm lack the ability to repair DNA, but it can also affect spermatogenesis itself. However, some substances may function as antioxidants, and thus eliminate effect of reactive oxygen species (oxidative stress) in the body. In this study, adult zebra finch males (Taeniopygia guttata) originating from the domesticated and recently wild-derived populations were exposed to the diquat (D), which enhances the oxidative stress, and carotenoid lutein (L), which could have an antioxidant function. Experimental design had factorial character 2x2 with a control (group L, D, LD, control). Neither oxidative stress, carotenoids, nor their interactions affected sperm morphology or velocity and it also did not increase abnormal sperm proportion in the ejaculate. However, the differences were observed at the molecular level, where by inducing the oxidative stress, the sperm had reduced signal intensity of acetylated α-tubulin in the sperm tails....

Page generated in 0.1007 seconds