• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 261
  • 30
  • 19
  • 19
  • 18
  • 11
  • 10
  • 8
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 769
  • 264
  • 131
  • 90
  • 86
  • 83
  • 81
  • 60
  • 57
  • 52
  • 52
  • 50
  • 47
  • 47
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Galectin-3 regulation of non small cell lung cancer growth

Kouverianou, Eleni January 2014 (has links)
Galectin-3 is a β-galactoside binding lectin expressed in tumour cells and macrophages and has been associated with increased malignancy in a variety of cancers. Previous work has shown that galectin-3 is an important regulator of macrophage function, promoting an alternative (M2) phenotype which potentiates chronic inflammation and fibrosis. Tumour associated macrophages (TAMs) adopt an M2 phenotype and are thought to promote tumour growth by down regulating T cell effector function and promoting angiogenesis. This project examines the hypothesis that host galectin-3 promotes lung cancer growth and spread. In order to test this hypothesis, Lewis Lung Carcinoma tumour growth and metastasis was investigated in strain matched mice either expressing or deficient in galectin-3. The Lewis Lung Carcinoma cell line (LLC1) is a spontaneous lung carcinoma line, derived from C57BL/6 mice, which readily forms tumours when transplanted. Furthermore, LLC1 cells were stably transfected with a Luciferase expressing vector in order to assist detection of tumour growth and metastasis in vivo. An orthotopic model of LLC1 growth suggested that galectin-3-/- animals do not support lung carcinoma growth and spread. This finding was confirmed by a subcutaneous model of cancer growth, where it was found that wild type animals display a higher proportion of macrophages expressing a prototypic M2 marker around tumour sites compared to galectin-3-/- animals. M2-promoting cytokine transcripts were also reduced in galectin-3-/- mice. Additionally, tumours of wild type mice were more invasive and presented more mature blood vessels compared to galectin-3-/- mice. To specifically address the role of recruited cells on tumour growth, metastasis and the inflammation profile around tumour sites, in relation to galectin-3 expression, bone marrow cells (BMCs) were transplanted from wild type to galectin-3-/- mice and vice versa. It was shown that galectin-3 positive BMCs restore the wild type phenotype of tumour growth in galectin-3-/- mice, while galectin-3 deficient BMCs impair tumour growth in wild type animals. Furthermore, macrophage ablation experiments demonstrated incapacity for tumour establishment in the absence of macrophages. A series of experiments investigating reported inhibition of galectin-3 by modified citrus pectin (MCP) via competitive inhibition did not provide conclusive results. MCP had no effect in vivo, but was able to inhibit LLC1 cell growth in vitro. Most importantly though, results were inconclusive as to whether galectin-3 binds MCP. Some ligand displacement was seen, but direct binding of the molecules could not be shown. In general, the results obtained demonstrate a strong pro-tumoural effect of galectin-3 on growth, tissue invasion and metastasis of LLC1 tumours via an increased proportion of Ym1-expressing macrophages around tumour sites. It was shown that macrophages are key cells for tumour initiation and that BMC phenotype in relation to galectin-3 expression determines the phenotype of tumour development in subcutaneous and orthotopic LLC1 models. Therefore, galectin-3 has a strong regulatory effect on tumour phenotype and could present a key target in the management of lung carcinomas.
302

Measuring redox potential in 3D breast cancer tumour models using SERS nanosensors

Jamieson, Lauren Elizabeth January 2016 (has links)
Cellular redox potential is incredibly important for the control and regulation of a vast number of processes occurring in cells. Disruption of the fine redox balance within cells is has been associated with disease. Of particular interest to my research is the redox gradient that develops in cancer tumours, in which the internal regions are further from vascular blood supply and therefore become starved of oxygen and hypoxic. This makes treatment of these areas a lot more challenging, as radiotherapy approaches rely on the presence of oxygen and, with a poor vascular blood supply, drugs delivered through the blood stream will have poor access to these regions. Currently, there is limited knowledge regarding the quantitative nature of this redox gradient in cancerous tumours. To aid the development of drugs and therapies to overcome this problem, a system that enables quantitative mapping of redox potential through a tumour would be a vital tool. In this work redox sensitive molecules attached to gold nanoparticles (NPs) are delivered to cells and give signals using surface enhanced Raman scattering (SERS). Redox potential changes are monitored quantitatively by ratiometric changes in signal intensity of selected signals in the SER spectra acquired. Multicellular tumour spheroids (MTS) are used as a three dimensional (3D) in vitro tumour model, in which the 3D architecture and gradients observed in tumours in vivo develop. As redox potential is pH dependent and pH is another important physiological characteristic in its own right, a SERS pH sensor was developed and ultimately a system that multiplexes intracellular pH and redox measurement by SERS. Initially, simultaneous redox potential and pH measurements were performed in monolayer culture before extending this to MTS. Photothermal optical coherence tomography (OCT) was used to investigate overall 3D NP distribution in the MTS models. It was possible to control NP delivery to MTS to localise NPs to various regions. Redox potential and pH could then be measured using a fibre optic Raman probe, and spatial response to drug treatment monitored. Intracellular NP localisation was investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), helium ion microscopy (HIM) and confocal fluorescence microscopy (CFM) and attempts were made to control NP delivery to particular intracellular compartments.
303

Apoptosis-driven activation of macrophages by starry-sky B-cell lymphoma

Willems, Jorine Joanna Lamberta Paulina January 2015 (has links)
In high-grade ‘starry-sky’ non-Hodgkin’s lymphoma (NHL), particularly Burkitt’s lymphoma (BL), large numbers of apoptotic tumour cells are engulfed by infiltrating tumour-associated macrophages (TAM). In situ studies suggest that in starry-sky TAM in a xenograft model of BL various tumour-promoting, trophic, angiogenic, tissue remodelling, and anti-inflammatory pathways are activated. Furthermore, apoptotic cells have been shown to activate expression of tumour-promoting matrix metalloproteinases in macrophages. This work investigates the hypothesis that apoptotic cells or factors released from apoptotic cells induce additional aspects of the starry-sky TAM signature, which serve to promote tumour growth. Macrophages at different stages of maturation, cultured in vitro in the presence of large numbers of apoptotic cells, were shown to differ in phenotype, giving credibility to the hypothesis. Less mature mouse bone marrow-derived macrophages (BMDM) were better at migrating towards apoptotic cells, whereas mature BMDM were better at phagocytosing them. Lactoferrin, which is released from cells undergoing apoptosis and inhibits the migration of neutrophils, was selected as a candidate mediator in the activation of macrophages by apoptotic cells. Lactoferrin was shown to bind viable human and murine monocytes and macrophages, however only high concentrations, which are unlikely to be physiologically or clinically relevant, were found to affect expression of starry-sky TAM genes or reduce classically-activated macrophage cytotoxicity. The direct effect of apoptotic cells on macrophage activation was assessed. Mature BMDM were not used for these studies as their development in vitro in a highly apoptotic environment was judged likely to bias their activation state toward that of TAM, therefore macrophages were first classically-activated with IFN-γ and LPS. This reduced the expression of many starry-sky TAM genes, including several genes associated with responses to apoptotic cells. However, classical activation did not inhibit apoptotic cell engulfment, but rather enhanced it. Co-culture with apoptotic cells, but not viable cells, increased the gene expression of Gas6, Mrc1, Cd36, Timp2, and Pparg, and the latter was dependent on direct interaction with macrophages rather than factors released from apoptotic cells. Furthermore, classically-activated macrophages were found to induce apoptosis in lymphoma cells, and although pre-co-culture of the macrophages with apoptotic cells did not reduce their ability to induce apoptosis, it enhanced tumour cell growth. Macrophage deficiency of IL-4Rα or galectin-3 did not affect classically-activated macrophage responses to apoptotic cells. However, classical activation of galectin-3 deficient macrophages appeared to restore the decreased ability of galectin-3 deficient, untreated macrophages to phagocytose apoptotic cells. Because of the unique new method of laser-capture microdissection by which starry-sky TAM signatures were established, direct comparisons with expression databases of tissue and in vitro cultured macrophages were not possible, but indirect comparisons suggest starry-sky TAM activation reflects the activation phenotype of a mixture of tissue macrophages. Furthermore, it highlighted phagocytosis as one of the most important pathways activated by starry-sky TAM. Together the results presented here suggest apoptotic lymphoma cells can shape TAM activation signatures in starry-sky NHL, even when macrophages are pre-activated to induce apoptosis in lymphoma cells. This is important when considering the consequences of anti-cancer therapies that induce apoptosis or aim to redirect phagocyte activation.
304

Mathematical modelling of solid tumour growth : a Dynamical Density Functional Theory-based model

Al-Saedi, Hayder M. January 2018 (has links)
We present a theoretical framework based on an extension of Dynamical Density Functional Theory (DDFT) to describe the structure and dynamics of cells in living tissues and tumours. DDFT is a microscopic statistical mechanical theory for the time evolution of the density distribution of interacting many-particle systems. The theory accounts for cell pair-interactions, different cell types, phenotypes and cell birth and death processes (including cell division), in order to provide a biophysically consistent description of processes bridging across the scales, including the description of the tissue structure down to the level of the individual cells. Analysis of the model is presented for a single species and a two-species cases, the latter describing competition between a cancerous and healthy cells. In suitable parameter regimes, model results are consistent with biological observations. Of particular note, divergent tumour growth behaviour, mirroring metastatic and benign growth characteristics, are shown to be dependent on the cell pair-interaction parameters.
305

Functional imaging of cancer using Optoacoustic Tomography

Tomaszewski, Michal Robert January 2019 (has links)
Poor oxygenation of solid tumours has been linked with resistance to chemo- and radio-therapy and poor patient outcomes. Measuring the functional status of the tumour vasculature, including blood flow fluctuations and changes in oxygenation is important in cancer staging and therapy monitoring. A robust method is needed for clinical non-invasive measurement of the oxygen supply and demand in tumours. Current clinically approved imaging modalities suffer high cost, long procedure times and limited spatio-temporal resolution. Optoacoustic tomography (OT) is an emerging clinical imaging modality that can provide static images of endogenous haemoglobin concentration and oxygenation. In this work, an integrated framework for quantitative analysis of functional imaging using OT is developed and applied in vivo with preclinical cancer models. Oxygen Enhanced (OE)-OT is established here to provide insight into tumour vascular function and oxygen availability in the tissue. Tracking oxygenation dynamics using OE-OT reveals significant differences between two prostate cancer models in nude mice with markedly different vascular function (PC3 & LNCaP), which appear identical in static OT. OE-OT metrics are shown to be highly repeatable and correlate directly on a per-tumour basis to tumour vascular maturity, hypoxia and necrosis, assessed ex vivo. Dynamic Contrast Enhanced (DCE) OT demonstrates the relationship between OE-OT response and tumour perfusion in vivo. Finally, the possibility of using OT data acquired at longer wavelengths to report on tumour water and lipid content is investigated, with a view to future providing intrinsically co-registered imaging of tumour oxygenation and cellular necrosis. These findings indicate that OE-OT holds potential for application in prostate cancer patients, to improve delineation of aggressive and indolent disease, while combined with DCE-OT, it may offer significant advantage for localised imaging of tumour response to vascular targeted therapies. Further work is needed to establish whether OT can provide a new method to detect tumour necrosis in vivo.
306

Development and application of new cancer-specific contrast agents for tumour detection by magnetic resonance imaging

Shahbazi-Gahrouei, Dariyoush, University of Western Sydney, Nepean, School of Science January 2000 (has links)
Four new potential MR imaging contrast agents were synthesised. Gadolinium-hematoporphyrin (Gd-H) was produced by inserting gadolinium into the naturally occurring porphyrin,hematoporphyrin.Gadolinium-tetra-carboranylmethoxyphenyl-porphyrin acetate (Gd-TCP)was similarly synthesised by gadolinium insertion into the synthetic porphyrin, 1, 6, 11, 16-tetra-[3-(carboranylmethoxy)phenyl] porphyrin. The monoclonal antibodies, 9.2.27 against melanoma and WM53 against leukaemia cell lines, were conjugated with cyclic anhydride gadolinium-diethylenetriaminepenta-acetic acid (Gd-cDTPAa), yielding the attachment of chelate DTPA to the antibodies. Gadolinium ion was inserted into the chelate DTPA, thus labelled both these antibodies with Gd-DTPA. Overall, with the satisfactory low levels of gadolinium in the liver, kidneys, and spleen, and good tumour uptake, gadolinium antibody conjugates has considerable potential for further diagnostic applications of MR imaging. / Doctor of Philosophy (PhD)
307

Illness, recovery and renewal and the role of creative painting experiences

Thorley, Christine (Faith) January 2005 (has links)
This thesis is autobiographical in nature and follows my life experiences relating to the development and subsequent removal of a large epidermoid brain tumour. The resultant impairment of my faculties, and its effect on my vocational, emotional and spiritual life is outlined. My main means of expressing my journey from illness to partial recovery and self-renewal is through art-making. This art-making (a form of art self-therapy) is recorded in my paintings; included in my thesis as my main means of expression taking the place of the printed word, as my capacity to write and type is somewhat impaired. The main value of my thesis relates to recounting the experience, for others of the renewal of my life, following a major illness. Most brain tumours are fatal or severely limit the ability of a person to communicate, or limit their intellectual functioning. I was fortunate in that I could still communicate through using the visual arts; an area where I had retained my competencies. My thesis then, is aimed at increasing the understanding of illness, recovery and renewal for those in the helping and medical professions; also to give hope of life renewal through art expression and art therapy in cases where verbal and written means of communication are limited. The field of my thesis is adult education and personal learning through experience. This learning has focussed on using creative painting experiences as a way of self-healing. Those paintings that were significant in my recovery and renewal are exhibited in the Art Gallery section of this thesis. By viewing these artworks, you can share in, and understand my journey through illness, recovery and renewal through art-making, self-therapy.
308

The Distribution of Platinum Complexes in Biological Systems

Alderden, Rebecca January 2006 (has links)
Doctor of Philosophy (PhD) / The toxicity of platinum anticancer drugs presents a major obstacle in the effective treatment of tumours. Much of the toxicity stems from a lack of specificity of the drugs for the sites at which they are able to exert maximum anticancer activity. An improved understanding of the behaviour of the drugs in the tumour environment may assist in the rational design of future platinum anticancer agents with enhanced specificity and reduced toxicity. In the work presented herein, the specificity of two classes of platinum anticancer agents was assessed (platinum(IV) cisplatin analogues and platinum(II) anthraquinone complexes). The interaction of the platinum(IV) agents with DNA, believed to be their main cellular target, was examined using XANES spectroscopy. This experiment was designed to assess the ability of the drugs to interact with DNA and thus exert their anticancer activity. It was shown that the platinum(IV) complexes were not reduced by DNA during 48 hr incubation. It was not possible to conclusively determine whether the interaction of the complexes with DNA was direct or platinum(II) catalysed, or whether interaction had occurred at all. The distribution of platinum(II) anthraquinone complexes and their corresponding anthraquinone ligands in tumour cells (A2780 ovarian and DLD-1 colon cancer cell lines) was investigated. The cytotoxicity of the compounds in DLD-1 cells was also assessed. It was found that the compounds were efficiently taken up into the cells and entered the lysosomal compartments almost exclusively. This suggested that the cytotoxicity of the drugs was caused by lysosomal disruption, or that the platinum complexes were degraded, leaving a platinum species to enter the cell nuclei and interact with DNA. Alternatively, the complexes may bind to proteins and transport into the nuclei of the cells, though with their fluorescence quenched by the protein. The penetration and distribution of platinum(IV) complexes was assessed in DLD-1 multicellular tumour spheroids (established models of solid tumours) using a number of synchrotron techniques, including micro-tomography, micro-SRIXE, and micro-XANES. The complexes were found to be capable of penetrating throughout the entire volume of the spheroids. Micro-XANES indicated that in central and peripheral spheroidal regions, bound platinum species were present largely as platinum(II).
309

Antitumour Metallocenes

Mokdsi, George January 2000 (has links)
This thesis reports a study of the chemical stability and coordination chemistry of several antitumour metallocenes Cp2MCl2 (Cp = h5-C5H5; M = Ti 1, V 2, Nb 3, Mo 4), as well as derivatives of Cp2TiCl2 1, with nucleic acids, nucleic acid constituents and proteins. These studies were carried out in order to identify the biologically active species and more fully understand the molecular level mechanism of action of the antitumour metallocenes, in particular Cp2TiCl2 1, which is currently undergoing phase II clinical trials. The interactions of Cp2MoCl2 4 with four oligonucleotides were studied by 1H and 31P NMR spectroscopy. In 50 mM salt solutions of Cp2MoCl2 4, hydrolysis of the halide ligands occurred to give a solution with pD -2, containing a species in which both Cp rings remain metal bound for 24 h. At pD -7, partial hydrolysis of the Cp rings (-30percent) occurred after 24 h. Addition of an aqueous solution of Cp2MoCl2 4 in 50 mM salt to the self-complementary sequence d(CGCATATGCG)2, maintaining the pD at 6.0-7.0, showed no evidence for the formation of a metallocene-oligonucleotide complex and only peaks arising from hydrolysis of Cp2MoCl2 4 were detected. A similar result was obtained in titration experiments with the single stranded sequence d(ATGGTA) at pD 6.5-7.0. However, at pD 3.0, new signals assigned to a molybdocene-oligonucleotide complex(es), which was stable for hours at pD 3.0, were detected; while at pD -7 the complex is destabilised and only peaks arising from hydrolysis of Cp2MoCl2 4 were detected. Titration experiments at low pD with Cp2MoCl2 4 and the dinucleotide dCG were consistent with formation of a complex arising due to coordination of molybdenum to guanine N7 and/or cytosine N3. The results obtained showed that stable oligonucleotide adducts were not formed in 50 mM salt at pD -7 and hence it is highly unlikely that formation of molybdocene-DNA adducts in vivo is the primary action that is responsible for the antitumour properties of Cp2MoCl2 4. The rate of hydrolysis of the aromatic rings of Cp2TiX2 (X equals Cl 1, OCOCH2NH3Cl 27) and the dimethylsubstituted derivatives (MeCp)2TiX2 (X equals Cl 34, OCOCH2NH3Cl 41), in aqueous solutions at pD 2-8 was studied by 1H NMR spectroscopy. Rapid hydrolysis of both the halide/glycine and Cp ligands in Cp2TiX2 (X equals Cl 1, OCOCH2NH3Cl 27) occurred and predominantly gave a precipitate at pD -7. In contrast, under the same experimental conditions, the predominant species present in aqueous solutions of (MeCp)2TiX2 (X equals Cl 34, OCOCH2NH3Cl 41) at pH 2-8 contained both MeCp rings metal bound. At pD < 5, Cp2TiX2 (X equals Cl 1, OCOCH2NH3Cl 27) and (MeCp)2TiX2 (X equals Cl 34, OCOCH2NH3Cl 41) formed similar complex(es) with purine nucleotides. However, at pD >5, stable adducts between nucleotides and Cp2TiX2 (X equals Cl 1, OCOCH2NH3Cl 27) were not formed. In contrast, (MeCp)2TiX2 (X equals Cl 34, OCOCH2NH3Cl 41) formed complex(es) with 5'-dAMP or 5'-dGMP, which were stable for 24 h. These results suggest that formation of stable chelates between (MeCp)2TiX2 (X equals Cl 34, OCOCH2NH3Cl 41) and nucleic acid constituents in vivo is possible. However, the methyl substituted derivatives 34 and 41 did not show any antitumour activity against EAT in mice when administered in either 10percentDMSO/90percentsaline or in water at pH 6.2-6.4, which suggests that the labile Cp-Ti bond present in Cp2TiCl2 1 is required for antitumour activity. The synthesis of a range of Cp substituted titanocene derivatives was investigated in an attempt to prepare derivatives with modified Cp stability in comparison to the methyl substituted derivatives. The synthesis of derivatives (CpCH2Y)2TiCl2 where Y equals ?CHO 43, ?CONMe2 44, ?NO2 45, (RCp)2TiCl2 where R equals ?COMe 46, ?COOMe 47 or ?CONMe2 48, (CpNMe2)2TiCl2 62 and (Cp(CH2)2NMe2)2TiCl2 63 was unsuccessful, due to the presence of coordinating substituents on the Cp rings and poor stability in polar, protic solvents. Hence, these derivatives were excluded from further studies. The rate of hydrolysis of the Cp rings of Cp2TiX2 (X equals Cl 1, OCOCCl3 22 and OCOCH2NH3Cl 27) in aqueous solutions, 10percentDMSO/90percentD2O and 100percent DMSO was monitored by 1H NMR spectroscopy. Rapid hydrolysis of both the carboxylate and Cp ligands of Cp2TiX2 (OCOCCl3 22 and OCOCH2NH3Cl 27) occurred in DMSO to give biologically inactive species. The rate of these reactions were concentration dependent as dilution of these samples with saline or water to give the therapeutic conditions of 10percentDMSO/90percentD2O slowed the hydrolysis chemistry. In contrast, samples of Cp2TiX2 (X equals Cl 1 and OCOCH2NH3Cl 27) dissolved in water, gave solutions containing the presumed antitumour active species in which the halide or glycine ligands have been hydrolysed but the Cp rings remain metal bound. Thus, charged X ligands may be incorporated into Cp2TiX2 and will give comparable activity to Cp2TiCl2 1 provided the samples are administered in water. The antitumour metallocenes Cp2MCl2 (M equals Ti 1, V 2, Nb 3, Mo 4) and the inactive derivative (MeCp)2TiCl2 34 were found to inhibit the relaxation of supercoiled plasmid DNA pBR322 by human topoisomerase II in vitro. These results implicated the inhibition of topoisomerase II in the mechanism of antitumour activity although there was no direct correlation between the in vitro results with biological activity against EAT in vivo. UV spectroscopy confirmed that the metallocenes Cp2MCl2 (M equals Ti 1, Mo 4) became associated with and were stabilised to hydrolysis by calf thymus DNA but not with human serum albumin. ICP-AES was used to measure the amount of metal associated with either DNA or human serum albumin after incubation with Cp2MCl2 (M equals Ti 1, Nb 3, Mo 4) and dialysis of these solution. The results confirmed that DNA stabilises or becomes associated with the metallocenes. However, errors associated with the ICP-AES measurements did not allow these results to be quantified. 1H NMR spectroscopy was used to show that the antitumour metallocene Cp2MoCl2 4 formed an adduct with glutathione 72 in the pH range 3-7 through the sulfur donor group. In comparison, the antitumour metallocenes Cp2MCl2 (M equals Ti 1, Nb 3) showed limited adduct formation with glutathione 72 at pH -3 and no adducts were detected at pH > 5.5.
310

Centrally located lung tumours treated with stereotactic body radiation therapy.

Karlsson, Kristin January 2006 (has links)
<p>Background: This is a retrospective study of patients treated with stereotactic body radiation therapy (SBRT) with the stereotactic body frame for centrally located lung tumours. The purpose was to investigate the doses to the different structures of the tracheobronchial tree and to relate these doses to the incidence of atelectasis. The goal was to estimate a tolerance dose for the bronchi. Materials: The patient material consisted of 71 patient treated at the Karolinska University Hospital for a total of 102 tumours between November 1993 and March 2004. The patient group consisted of 36 men and 35 women with a mean age at the treatment of 67 years (range 34-87). The group was a mixture of patients with primary lung cancer and pulmonary metastases. Methods: After rereading and reactivating the dose plans for the patients in the treatment planning system (TPS) the different tracheobronchial structures (trachea, right mainstem bronchus, right superior bronchus, right intermedius bronchus, right medius bronchus, right inferior bronchus, left mainstem bronchus, left superior bronchus, left intermedius bronchus, left inferior bronchus) were outlined. The dose distribution in each structure was calculated and a dose-volume histogram (DVH) was created. Patients were allocated to four groups, i.e. patients with right sided tumours (22), left sided tumours (14), mediastinal tumours (23) and bilateral tumours (10). After that the maximum and mean doses to all structures were analysed. An oncologist reviewed the medical records for the patients and especially looked for atelectasis. The doses were related to the incidence of atelectasis.</p><p>Results and Conclusions: For the patient group with right sided tumours it seems like the maximum doses to the bronchi are higher for the patients with atelectasis in comparison with patients without atelectasis. A better correlation between atelectasis and maximum doses rather than mean doses was observed for these patients. At this moment the results are too preliminary, so it is not possible to suggest a tolerance dose for the bronchi. What can be said is that the maximum doses to the bronchi for patients with right sided tumours without atelectasis are below 250 Gy3 expressed in biologically equivalent dose (BED) with α/β=3Gy, while at least one bronchi structure in the atelectasis patients received a maximum dose above 250 Gy3.</p>

Page generated in 0.05 seconds