Spelling suggestions: "subject:"una fisher"" "subject:"tuna fisher""
11 |
Economic model of a fisheries market with endogenous supply : the Hawaii skipjack tuna caseHudgins, Linda Lucas, 1946 January 1980 (has links)
Photocopy of typescript. / Bibliography: leaves 107-114. / ix, 114 leaves, bound ill. 28 cm
|
12 |
The biology, ecology and exploitation of longtail tuna, Thunnus tonggol (Bleeker) in OceaniaWilson, M. A. January 1982 (has links)
Thesis (M.Sc.)--Macquarie University, School of Biological Sciences, 1982. / "June 1981" Bibliography: leaves 176-185.
|
13 |
The biology, ecology and exploitation of longtail tuna, Thunnus tonggol (Bleeker) in OceaniaWilson, M. A (Marc A.) January 1982 (has links)
"June 1981" / Thesis (M.Sc.)--Macquarie University, School of Biological Sciences, 1982. / Bibliography: leaves 176-185. / This study was undertaken at the behest of the Papua New Guinea Government in 1973 and extended to 1978. It aimed at elucidating the various aspects of the life history of longtail tuna Thunnus tonggol with a consideration of the factors influencing distribution, relative abundance and exploitation. During this period, 414 tagged fish were released with an overall recapture rate of 8.6% being recorded. Age at first maturity was established at approximately 60 cm for both sexes with a spring-summer spawning being postulated on the basis of gonadal development as evidenced by increasing gonadal indices. No significant departure from the 1:1 sex ratio was observed. -- Von Bertalanffy growth eguations were derived from the reading of increments on sagittal otoliths and modal progression analysis, and yielded respectively:- Lt = 131.8 [1-e⁻·³⁹⁵ ⁽t⁻·⁰³⁵⁾] and Lt = 122.91 [1-e⁻·⁴¹ ⁽t⁻·⁰³²⁾] Both curves were consistent with growth indications from tag recoveries. The predictive length-weight relationship was determined to be ln(Wt) = -9.67+2.656 ln(L.C.F.) and no significant differences existed between the sexes. -- Longtail were shown to be opportunistic feeders: fish constituted the major portion of the diet and increased in accord with longtail size. It is postulated that longtail undergo longshore migrations due to thermal requirements and that these allowed for a hypothetical spawning site around the Aru Island region - an acknowledged nutrient rich area during spring. Both morphometric and biochemical analyses failed to establish the existence of an eastern and western Australian longtail tuna population although there is strong evidence to suggest that sub-specific differences occur between Malaysian and Australian-P.N.G. stocks. -- The exploitation of longtail at three levels; artisanal, amateur and commercial are reported. Concern is expressed as to the lack of data collection and collation of the Taiwanese gillnet fleet operating in the Australian Fishing Zone and about the exploitation of pre-adult longtail tuna. Accordingly, recommendations are made to alleviate the statistical problems and that consideration be given to a detailed study of the fishing parameters which affect the population dynamics of longtail tuna. The latter recommendation in particular should examine the impact that the foreign operated fishery has had on the stocks in Oceania. / Mode of access: World Wide Web. / ix, 195 leaves ill., maps
|
14 |
Contribution towards the development of a management plan for the baitboat and sport fishery for tuna in South AfricaNewcombe, Hylton Cecil January 2012 (has links)
Tuna are of significant global economic importance and a prime food source. Increased levels of fishing have resulted in many stocks being under threat and a number of species are considered to be overfished. The South African tuna industry has had limited management attention from the South African fisheries management agency. A recent development has been an increase in the number of tuna caught by small vessels that target the fresh tuna market in South Africa and overseas. This has highlighted the importance of developing a holistic management plan for the sector and creating an awareness, among vessel owners, of the importance of compliance with initiatives such as the Marine Stewardship Council (MSC). The South African tuna fishery comprises three sectors: baitboat, sport and longline, all of which are currently in need of acquiring more biological and fisheries data. This project was initiated to collate existing information and to collect additional information where possible. This encompassed a qualitative and quantitative assessment of the size and shape of the tuna fishing industry, which included estimates of total catch, effort, catch-per-unit-of-effort (CPUE) and stock structure (obtained through comparative estimates of age and growth), as well as socio-economic and economic information. A technique involving an examination of specific vertebrae was used to obtain age-growth information for T. albacares. These data were used to estimate von Bertalanffy (VBGF) growth parameters: F 2 1. , k 0.1 , and t₀ -0. 1 year. No significant differences in growth parameters were found in yellowfin tuna (Thunnus albacares) from different localities around the South African coast, i.e. from the south eastern Atlantic and the south western Indian Ocean. In addition, growth did not differ between South Africa and other regions (Draganic and Pelzcarski 1984, Fonteneau 1980, Gascuel et al. 1992, LeGuen and Sakagawa 1973, Lehodey and Leroy 1999, Lessa and Duarte-Neto 2004, Shuford et al. 2007, Stequert et al. 1996, Wild 1986, Yang et al. 1969). Further substantiation of the above-mentioned observations was found by recording differences in the sizes of fish caught in the inshore (baitboat and sport fishery vessels) and offshore (large pelagic longline vessels) sectors of South African tuna fisheries. A significant difference between the regions — in terms of the size of fish caught inshore — was noted, with mostly-juvenile fish being caught in KwaZulu-Natal (5.4 ± 3.5kg), sub-adult fish in the Eastern Cape (26.2 ± 13.4kg), and adult fish in the Western Cape (42.3 ± 14.4kg). Since mostly-adult fish were caught offshore by longliners, with no significant differences between regions, it is however possible th at adult fish predominantly inhabit the offshore region. Yellowfin tuna caught by the large pelagic longline fishery in the three managerial zones (A, B and C) were predominantly adult fish of similar size, namely Zone A: 38.9 ± 6.9kg; Zone B: 28.7 ± 4.6kg, and Zone C: 36.0 ± 5.1kg. The recreational ski boat sport fishery has remained stable, in terms of participation, consisting mostly of white middle aged males in the top 25% of household income distribution, having either permanent occupational status or being retired. Fishers within this sector are willing to incur great expense to partake in the fishery and they provide an important economic contribution to coastal towns, particularly in the Eastern Cape. The total catch (of 83t) of yellowfin tuna by the competitive sport fishery within the Western and Eastern Cape regions was considerably lower than that of commercial tuna baitboat catches, which amounted to 186t, and the large pelagic longline sector that caught t in 200. It is however likely that the competitive sport fishery's total yellowfin tuna catch (of 83t in 2009) of the Eastern and Western Cape competitive sport fishery was considerably less than the total yellowfin tuna catches of the whole South African deep-sea sport fishery. Longfin tuna are the primary target species of South Africa‘s baitboat fisheries, comprising an average of 86% of the total catch and generating ZAR49 million in employment income in 2002. South Africa was responsible for 20% of the total longfin tuna annual yield in 2004 in the southern Atlantic Ocean, behind Taiwan with 59%. However, yellowfin tuna only contributes a small percentage towards total catches (8.4 ± 8.2% between 1995 and 2009), generating ZAR1.3 million in employment income in 2002. Of the four vessel categories comprising the tuna baitboat fishery, ski boats had the highest yellowfin tuna CPUE in 2009 (117 ± 62 kg.vessel⁻¹.day⁻¹) and the lowest effort. The ski boats sector is the most opportunistic fishery as they are only active when either longfin or yellowfin tuna are in high abundance. At such times catches are guaranteed, so can be expected to offset expenses. In 2009 the CPUE for yellowfin tuna for 15–19m vessels and freezer deckboats was 12 ± 20kg.vessel⁻¹.day⁻¹ and 3 ± 6kg.vessel⁻¹.day⁻¹, respectively. These vessels specifically target longfin tuna when they are in abundance. Since the start of the tuna baitboat fishery in 1995, there has been a substantial increase in the number of new entrants. In 2002 this sector had a fleet size of 82 vessels with a capital value of ZAR163 million and a total employment income of ZAR58 million, employing 2 173 fishers, of which 87% were black African. The commercial tuna baitboat fleet has subsequently grown to 200 vessels and 3600 crew, with 110 active vessels fishing for a combined fleet average of 46 days per year. There are a high number of owner-operated vessels. Since 2007 the fishery's profit to cost ratio has been low due to the low abundance of tuna stocks off the coast of South Africa, which has resulted in poor catch returns, placing economic pressure on the fishery. The baitboat industry is a low-profit-margin fishery with a total net catch value worth ZAR90 million in 2009 (Feike 2010). The abundance of yellowfin tuna influences profit margins, with very high profits being made when abundance and catches are high. The large pelagic longline fishery has a total allowable effort of 43 vessels of which only 30 vessels fished during 2009, when a reported 766t of yellowfin tuna were caught, representing a total tonnage far in excess of that obtained by the combined effort of the baitboat and sport fishery. It is, however, assumed that considerable underreporting of catches takes place within this fishery, which means that the estimated total net catch value of ZAR100 million could, in fact, be much higher. Such underreporting of catches is of great concern for this fishery, as is the high bycatch of Chondricthians spp. that significantly outweighs imposed regulatory limits (DEAT 2007). The present study demonstrates the current lack of comprehensive catch and effort data for the sport, baitboat and longline fisheries as well as the serious limitations and flaws associated with current databases. Results from the present study have drawn attention to a number of high-priority research needs, as outlined below. (1) A major lack of comprehensive catch and effort data for the sport fishery, which can be rectified by focussing on obtaining more competition data, as well as high-quality catch and effort and socio-economic information, as opposed to relying on information from non-club anglers (Gartside et al. 1999, Williams 2003, Cass-Calay 2008). Acquisition of such data is relatively inexpensive: the location of organized clubs and their frequent competition meetings provide widespread coverage along the Southern African coastline. Such data acquisition efforts have the potential to provide reliable information on spatial catch trends. (2) Validation of vessel catch return data is required for commercial fisheries and on some recent data that has emerged from studies of catch rates and trends for target species, particularly in the longline fishery. In this context it should be noted that the most recent peer-reviewed publications on this exploratory fishery were published more than a decade ago (Kroese 1999, Penny and Griffiths 1999). Additional studies need to be undertaken and journal articles published on the current stock status of South African catches of yellowfin and bigeye tuna and swordfish.
|
15 |
Dynamics of phytoplankton in relation to tuna fish farms in Boston Bay and near-shore Spencer Gulf, South AustraliaPaxinos, Rosemary, January 2007 (has links)
Thesis (Ph.D.)--Flinders University, School of Biological Sciences. / Typescript bound. Includes bibliographical references: (leaves 149-166) Also available online.
|
16 |
Fisheries data requirements under international law achieving long-term conservation and sustainable use of tuna fisheries in the western central Pacific Ocean /Manarangi-Trott, Lara. January 2008 (has links)
Thesis (Ph.D.)--University of Wollongong, 2008. / Typescript. Includes bibliographical references: p. 401-424.
|
17 |
Global sushi: A socio-ecological analysis of the Sicilian bluefin tuna fishery / Socio-ecological analysis of the Sicilian bluefin tuna fisheryLongo, Stefano B., 1969- 06 1900 (has links)
xvii, 330 p. : ill., maps. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / This dissertation is a sociological study of the Sicilian bluefin tuna fishery. It will examine the social and ecological transformation of this fishery during the modern era. This will be analyzed utilizing a sociological framework that draws on theory from environmental sociology. The Sicilian fishery has been exploited for its abundant tuna for over a millennium, providing a major source of protein for Mediterranean civilizations. However, within the last half century there has been exponential expansion of industrialized methods of production and increasing capture efforts. This has culminated in the development of bluefin tuna "ranches," which have become a highly controversial method for supplying global markets. Escalating pressure on the fishery has contributed to a host of environmental and social concerns, including pushing this important fishery to the brink of collapse. Using a combination of primary and secondary source data such as interviews with local fishers and those in the tuna ranching sector, data compiled by international agencies such as the International Commission for the Conservation of Atlantic Tunas (ICCAT) as well as archival data on the Sicilian bluefin tuna fishery, I will employ sociological methods and analyze the recent changes in social life and the environment in Sicilian fishing communities. Subsequently, this project will shed light on the globalized and industrialized nature of the modern agri-food system and lead to a better understanding of its social and environmental impacts. / Committee in charge: Richard York, Chairperson, Sociology;
John Foster, Member, Sociology;
Yvonne Braun, Member, Sociology;
Joseph Fracchia, Outside Member, Honors College
|
18 |
Contribution des radars embarqués à l'étude des stratégies collectives de recherche alimentaire chez les oiseaux marins / Contribution of on board radars to the study of collective foraging strategies in seabirdsAssali, Camille 30 November 2017 (has links)
Dans l’océan, les bancs de proies représentent une source d’alimentation ponctuelle. Pour pallier à cela, les oiseaux marins profitent de l’information sociale provenant de conspécifiques, hétérospecifiques, ou bateaux de pêche. Dans cette thèse, nous cherchons à évaluer l’influence de différentes sources d’information sur les stratégies de recherche alimentaire des oiseaux marins en milieu pélagique tropical.Les oiseaux détectent des prédateurs ou des bateaux à des distances dépassant dix kilomètres. Nous étudions donc leur distribution à sub-méso-échelle, ceci grâce à des images d’un radar à bord d’un thonier senneur.Les images radar offrent une visualisation, dans les 30 km autour du navire, de la distribution instantanée de la communauté d’oiseaux en vol et de leurs déplacements. Nous mettons au jour des motifs d’agrégation temporaires, d’une dizaine de kilomètres de diamètre, au sein de la distribution des oiseaux. Les distances entre groupes d’oiseaux sont compatibles avec l’échange d’information au sein de ces agrégations.Une étude plus fine révèle des vols coordonnés de groupes d’oiseaux distants de plusieurs centaines de mètres («râteaux»), suggérant un haut degré de coopération lors de la recherche de proies. Nous questionnons ensuite le degré de perturbation du senneur dans la recherche alimentaire des oiseaux. Les résultats indiquent que les oiseaux marins discriminent les différentes activités du navire.Ce travail constitue, à notre connaissance, la première utilisation des radars embarqués pour l’étude de l’écologie des oiseaux en haute mer, et ouvre nombre de perspectives pour comprendre la dynamique des interactions entre prédateurs marins supérieurs. / In the ocean, prey is patchily distributed. To overcome this challenge, pelagic seabirds benefit from social information from conspecifics, heterospecifics, or fishing boats.As part of this dissertation, we aim at evaluating the influence of different information sources in seabird foraging strategies in the tropical pelagic environment.Seabirds can detect visible predators or boats at distances of over ten kilometres. We thus study the distribution of seabirds at sub-meso-scale, analysing images recorded from a radar on board a tuna purse-seiner. Radar images provide a visualisation of the instantaneous distribution of the in-flight seabird community as well as seabird movements within thirty kilometres of the seiner. We detect over-aggregatedand temporary patterns, spanning about ten kilometers, within flying seabirds’ distribution. Distancesbetween seabird groups are compatible with information exchanges within these aggregations. A finer scale study reveals coordinated flights of seabird groups distant of hundreds of meters from each others (« rakes »), and suggesting a high level of coordination during foraging. We then investigate the potential disturbance induced by the seiner in the seabirds’ foraging network.First results indicate that seabirds can discriminate the different seiner’s activities.To our knowledge, this work is the first contribution of on board radars use for the study of seabird ecology in the high seas, and opens interesting perspectives, such as the understanding of interactions’ dynamics within the marine top-predators guild.
|
19 |
Experimental field studies and predictive modelling of PCB and PCDD/F levels in Australian farmed Southern Bluefin Tuna (Thunnus maccoyii).Phua, Samuel Tien Gin January 2008 (has links)
Farmed Southern Bluefin Tuna (SBT) (Thunnus maccoyii) is an important export product for South Australia (SA). It is exported to Japan, China, Korea and the United States for the sushi and sashimi markets. The primary purpose of SBT farming in SA is to fatten wild-caught juvenile fish (2-4 years of age with initial mean weights between 12-20 kg) over a period of approximately five months by feeding a selection of baitfish types. Farmers, farm managers and consumers of SBT all have an interest in managing chemical residues that have the potential to biomagnify in the fatty tissue of the farmed SBT fillets. Of particular interest are chemical residues of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins / dibenzofurans (PCDD/Fs). This research presents the investigations and experimental validation of a predictive model that can be used to address the levels of residues in the fillets of farmed SBT at harvest from feeding (as the source) when applied to SBT aquaculture. An additional industry-focussed aim of this research was to determine if a Longer Term Holding (LTH) farming period, with a duration of an extra 12 months after a typical farming period of approximately five months, could produce SBT with higher condition index (CI) and lipid content, while keeping levels of PCBs and PCDD/Fs low, compared to the typical farming period. The justification for this research is that an adequate quantitative model is essential to help industry achieve targeted concentrations in the final fillet product by making scientific-based decisions on baitfish selection (baitfish strategies for the feeding of SBT), and longer term, to confidently demonstrate to local markets and importing countries that Australia is actively managing levels of PCBs and PCDD/Fs in farmed SBT, to ensure a high quality and safe product is delivered to the consumer. The novelty of this research is underpinned by four integrated stages, and the criteria for an adequate model established. The important criteria included: accurate predictions versus observed data demonstrated through the analysis of residual plots, potential physiological interpretation of model coefficients, parsimony – the model should be as simple as possible (but no simpler) and that the model should be easy to use. Firstly, a logical starting point was the development of a risk framework for residues in SBT. The developed framework was based on conventional principles of microbiological risk assessment highlighted in Codex Alimentarius. The risk framework consists of five governing principles: hazard identification, hazard characterisation, exposure assessment, risk characterisation and model validation. The advantages of the risk framework is that it provides a systematic research approach and permits information to be handled unambiguously, especially important for the niche SBT industry where chemical residue research is carried out for the first time. Secondly, because of a lack of available scientific data in context of this research, commercial-scale experimental field data for levels of PCBs and PCDD/Fs in typical farmed SBT as affected by feeding and growth were collected over 17 months at seven time intervals from Farm Delta Fishing Pty Ltd in 2005/06 (n = 50). Field data from another commercial company, Farm Alpha Fishing Pty Ltd, was collected over the typical farming period specific to this company, spanning 15 weeks at three time intervals in 2006, for validation work (n = 15). The data obtained from Farm Delta Fishing Pty Ltd revealed that whole weight of farmed SBT increased from 18.5 kg to 30.3 kg for a typical farming period, and subsequently to 41.0 kg by the end of the LTH farming period. A maximum mean CI of 24.0 ± 0.5 kg.m⁻³ and a maximum mean lipid content of 17.6 ± 0.5% was achieved at the third time interval of the typical farming period, for the baitfish types and ratios used as feed. There were no significant differences in the CI and lipid between the final harvests of the typical farming and LTH periods, i.e. even after an additional 12 months of farming. PCB and PCDD/F concentrations, however, increased between the final harvests of the typical farming and LTH periods. The data indicated that a typical farming period was sufficient to achieve a maximum CI and lipid content with lower concentrations of PCBs and PCDD/Fs in the fillets relative to the LTH farming period. For the third stage of this research, a quantitative model was synthesised and applied to the PCB and PCDD/F (2,3,7,8-TeCDF) data detected in farmed SBT fillets. Assimilation efficiencies for PCBs and 2,3,7,8-TeCDF in the fillets of SBT were obtained. An assimilation efficiency, or percentage retention (efficiency expressed as a percentage), in the fillet of SBT is a measure of the uptake of a chemical residue from food (baitfish) to the SBT fillet. For the WHO-PCBs, assimilation efficiencies based on SBT fillets ranged between 19.1 – 35.3 % with the exception of PCB 169. The highest assimilation efficiency of 35.3 %, with a range of 30.4 – 40.3 % (at the 95 % confidence level) was attributed to the most toxic PCB congener, PCB 126. An assimilation efficiency of 39.2 % was determined in SBT fillets for the congener 2,3,7,8-TeCDF, which was higher than the assimilation efficiencies determined for the WHO-PCB congeners. A residual plot as predicted value versus observed value indicated that the predictive model was neither under- or over-parameterised. However, when the predictive model was assessed against the data set from Farm Alpha Pty Ltd, the model over-predicted the actual PCB and PCDD/F concentrations. The over-prediction is attributed to possible overfeeding of SBT farmed by Farm Alpha Fishing Pty Ltd. From a food safety point of view, in the absence of ideal predictions because of a lack of ideal validation data sets, an over-prediction instead of under-prediction is preferred. In the fourth stage, the practical application of the predictive model was demonstrated. Because SBT fillets are retailed as tissue group-specific, i.e. akami (low fat), chu-toro (medium fat) and otoro (high fat) fillets, PCB and PCDD/F analyses were carried out on the three tissue groups for selected SBT (n = 7). Dietary modelling on SBT consumption in humans was carried out using findings from the predictive model and tissue-specific data. The baitfish strategy employed for the feeding of farmed SBT consequently affects dietary exposure to SBT consumers. Exposure to PCBs and PCDD/Fs is approximately seven times lower for the consumption of a skin-free, boneless akami fillet than for a comparable otoro fillet of the same size. This dietary exposure assessment accounted only for consumption of SBT tissue-specific fillets. The experimental field study and modelling work on PCB and PCDD/F concentrations in farmed SBT (fillets) outlined in this thesis importantly directs the need to re-evaluate a specific model to better cater for SBT farming practices where SBT fillets are produced for human consumption. Because conditions that normally pertain to commercial farming of wild-caught fish were studied, findings should be of interest to industries where other species of fish (for food) are farmed in sea-cages in the open ocean. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1342453 / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2008
|
20 |
Experimental field studies and predictive modelling of PCB and PCDD/F levels in Australian farmed Southern Bluefin Tuna (Thunnus maccoyii).Phua, Samuel Tien Gin January 2008 (has links)
Farmed Southern Bluefin Tuna (SBT) (Thunnus maccoyii) is an important export product for South Australia (SA). It is exported to Japan, China, Korea and the United States for the sushi and sashimi markets. The primary purpose of SBT farming in SA is to fatten wild-caught juvenile fish (2-4 years of age with initial mean weights between 12-20 kg) over a period of approximately five months by feeding a selection of baitfish types. Farmers, farm managers and consumers of SBT all have an interest in managing chemical residues that have the potential to biomagnify in the fatty tissue of the farmed SBT fillets. Of particular interest are chemical residues of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins / dibenzofurans (PCDD/Fs). This research presents the investigations and experimental validation of a predictive model that can be used to address the levels of residues in the fillets of farmed SBT at harvest from feeding (as the source) when applied to SBT aquaculture. An additional industry-focussed aim of this research was to determine if a Longer Term Holding (LTH) farming period, with a duration of an extra 12 months after a typical farming period of approximately five months, could produce SBT with higher condition index (CI) and lipid content, while keeping levels of PCBs and PCDD/Fs low, compared to the typical farming period. The justification for this research is that an adequate quantitative model is essential to help industry achieve targeted concentrations in the final fillet product by making scientific-based decisions on baitfish selection (baitfish strategies for the feeding of SBT), and longer term, to confidently demonstrate to local markets and importing countries that Australia is actively managing levels of PCBs and PCDD/Fs in farmed SBT, to ensure a high quality and safe product is delivered to the consumer. The novelty of this research is underpinned by four integrated stages, and the criteria for an adequate model established. The important criteria included: accurate predictions versus observed data demonstrated through the analysis of residual plots, potential physiological interpretation of model coefficients, parsimony – the model should be as simple as possible (but no simpler) and that the model should be easy to use. Firstly, a logical starting point was the development of a risk framework for residues in SBT. The developed framework was based on conventional principles of microbiological risk assessment highlighted in Codex Alimentarius. The risk framework consists of five governing principles: hazard identification, hazard characterisation, exposure assessment, risk characterisation and model validation. The advantages of the risk framework is that it provides a systematic research approach and permits information to be handled unambiguously, especially important for the niche SBT industry where chemical residue research is carried out for the first time. Secondly, because of a lack of available scientific data in context of this research, commercial-scale experimental field data for levels of PCBs and PCDD/Fs in typical farmed SBT as affected by feeding and growth were collected over 17 months at seven time intervals from Farm Delta Fishing Pty Ltd in 2005/06 (n = 50). Field data from another commercial company, Farm Alpha Fishing Pty Ltd, was collected over the typical farming period specific to this company, spanning 15 weeks at three time intervals in 2006, for validation work (n = 15). The data obtained from Farm Delta Fishing Pty Ltd revealed that whole weight of farmed SBT increased from 18.5 kg to 30.3 kg for a typical farming period, and subsequently to 41.0 kg by the end of the LTH farming period. A maximum mean CI of 24.0 ± 0.5 kg.m⁻³ and a maximum mean lipid content of 17.6 ± 0.5% was achieved at the third time interval of the typical farming period, for the baitfish types and ratios used as feed. There were no significant differences in the CI and lipid between the final harvests of the typical farming and LTH periods, i.e. even after an additional 12 months of farming. PCB and PCDD/F concentrations, however, increased between the final harvests of the typical farming and LTH periods. The data indicated that a typical farming period was sufficient to achieve a maximum CI and lipid content with lower concentrations of PCBs and PCDD/Fs in the fillets relative to the LTH farming period. For the third stage of this research, a quantitative model was synthesised and applied to the PCB and PCDD/F (2,3,7,8-TeCDF) data detected in farmed SBT fillets. Assimilation efficiencies for PCBs and 2,3,7,8-TeCDF in the fillets of SBT were obtained. An assimilation efficiency, or percentage retention (efficiency expressed as a percentage), in the fillet of SBT is a measure of the uptake of a chemical residue from food (baitfish) to the SBT fillet. For the WHO-PCBs, assimilation efficiencies based on SBT fillets ranged between 19.1 – 35.3 % with the exception of PCB 169. The highest assimilation efficiency of 35.3 %, with a range of 30.4 – 40.3 % (at the 95 % confidence level) was attributed to the most toxic PCB congener, PCB 126. An assimilation efficiency of 39.2 % was determined in SBT fillets for the congener 2,3,7,8-TeCDF, which was higher than the assimilation efficiencies determined for the WHO-PCB congeners. A residual plot as predicted value versus observed value indicated that the predictive model was neither under- or over-parameterised. However, when the predictive model was assessed against the data set from Farm Alpha Pty Ltd, the model over-predicted the actual PCB and PCDD/F concentrations. The over-prediction is attributed to possible overfeeding of SBT farmed by Farm Alpha Fishing Pty Ltd. From a food safety point of view, in the absence of ideal predictions because of a lack of ideal validation data sets, an over-prediction instead of under-prediction is preferred. In the fourth stage, the practical application of the predictive model was demonstrated. Because SBT fillets are retailed as tissue group-specific, i.e. akami (low fat), chu-toro (medium fat) and otoro (high fat) fillets, PCB and PCDD/F analyses were carried out on the three tissue groups for selected SBT (n = 7). Dietary modelling on SBT consumption in humans was carried out using findings from the predictive model and tissue-specific data. The baitfish strategy employed for the feeding of farmed SBT consequently affects dietary exposure to SBT consumers. Exposure to PCBs and PCDD/Fs is approximately seven times lower for the consumption of a skin-free, boneless akami fillet than for a comparable otoro fillet of the same size. This dietary exposure assessment accounted only for consumption of SBT tissue-specific fillets. The experimental field study and modelling work on PCB and PCDD/F concentrations in farmed SBT (fillets) outlined in this thesis importantly directs the need to re-evaluate a specific model to better cater for SBT farming practices where SBT fillets are produced for human consumption. Because conditions that normally pertain to commercial farming of wild-caught fish were studied, findings should be of interest to industries where other species of fish (for food) are farmed in sea-cages in the open ocean. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1342453 / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2008
|
Page generated in 0.0601 seconds