• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Mossbauer Spectroscopy Investigation of Fe enriched WC-Co

Sufianu, Adeleke Wasiu January 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. May 2016. / Tungsten carbide cobalt (WC-Co) cemented carbides are widely used for cutting, drilling, machining and as wear resistant materials due to the combination of high hardness and fracture toughness. In this work, we report on as-milled and as-sintered WC-10Co-20Fe samples which were ball milled for 15 hrs and sintered using liquid phase sintering (LPS). These samples were investigated by Vickers hardness test, microstructural analysis, X-ray diffraction (XRD), transmission Mössbauer spectroscopy (TMS) and conversion electron Mössbauer spectroscopy (CEMS) techniques. A mean hardness value of 1160 ± 42 HV was obtained for WC-10Co sample while a value of 776 ± 35 HV was determined for the WC-10Co-20Fe using the Vickers hardness tester. The lower hardness value for WC-10Co-20Fe is attributed to the high volume of the binders (10% Co and 20 %Fe) incorporated in the sample. The microstructural analysis of the as-sintered WC-10Co and WC-10Co-20Fe samples reveals that the light regions represent the WC phases and the dark regions signify the presence of the Co and CoFe phases in the as-sintered WC-10Co and WC-10Co-20Fe samples, respectively. The energy dispersive spectroscopy (EDS) of the as-sintered samples shows the presence of the starting powders used (WC, Co and Fe) and some Cr contamination resulting from either the production process or the starting powders. / GR 2016
2

Effect of SiC abrasive breakdown on the wear rate of WC-12wt%Co alloy

Mabhali, Luyolo Andrew Baxolise 25 June 2008 (has links)
This research project is a preliminary investigation of the effect of SiC abrasive breakdown on the wear rate of a WC-12wt%Co mining alloy. Wear tests were carried out on a two body-sliding wear apparatus under (a) “Ideal” (replacing the SiC paper periodically to ensure continual exposure to fresh abrasives), (b) “No debris” (removing the wear debris periodically) and (c) “With debris” (retaining the wear debris for the entire wear test) wear conditions. The WC-12wt%Co specimens and SiC abrasive grits were examined before and after the wear tests using optical, stereo and electron microscopy. As wear progressed, the SiC abrasives blunted thereby increasing the abrasive/specimen contact area, resulting in a reduction in the WC-12wt%Co wear rate. Wear debris clogging the interstices between the abrasive grits caused a further reduction in the WC-12wt%Co wear rate by adding to the abrasive/specimen contact area already created by blunting. Increasing the applied load resulted in an increase in the WC-12wt%Co wear rate under “Ideal” wear conditions. Under the remaining wear conditions, the increased load resulted in a faster deterioration of the SiC grits. The dominant wear mechanisms under all conditions are characterized by hard abrasive wear that caused extensive grooving, Co binder extrusion and cracking and fragmentation of WC grains.
3

Characterisation of coatings deposited by the high velocity oxygen fuel process

Coulson, W. January 1994 (has links)
No description available.
4

Consolidation of WC-Co nanocomposites synthesised by mechanical alloying

Hewitt, Stephen A. January 2009 (has links)
The influence of mechanical alloying (MA) milling time, temperature, sintering method and microstructure on the mechanical properties of a tungsten carbide-cobalt (WC-Co) hardmetal, based on 10wt% Co, has been established. The effects of high-energy milling for 30, 60, 180 and 300 min and the interrelation between milling time and powder properties, and the resultant effects on the mechanical properties of the consolidated WC-10Co material, has been obtained for a horizontally designed ball mill. Nanostructured WC-10Co powder was synthesised after 60 min cyclic milling at room temperature with an average WC domain size of 21 nm. In direct comparison, a WC-10Co composition MA at -30°C for 60 min produced an average WC domain size of 26 nm with a higher lattice strain. WC domain size showed a slight increase with milling time, measured at 27 nm after 300 min ball milling. Extended ball milling (300 min) reduced the mean particle size from 0.148 μm for 60 min milling to 0.117 μm. Thermal analysis showed that the onset temperature of the WC-Co eutectic was related to particle size with increased milling time reducing the onset temperature from 1344°C after 60 min milling to 1312°C after 300 min milling. Onset temperature was further reduced by the addition of vanadium carbide (VC), reducing the onset temperature to 1283°C after 300 min milling. Powder contamination increased with increased milling time with Fe content measured at ~ 3wt% after 300 min ball milling. Milling at -30°C reduced Fe contamination to an almost undetectable level. Increased ball milling time resulted in decreased levels of green density with the powders milled for 30 and 300 min achieving 62.5% and 59.5% TD, respectively. Relative density increased for the powder milled at -30°C compared to the RT milled powder due to its flattened, slightly rounded morphology. A large difference in VC starting particle size compared to WC and Co led to non-uniform dispersion of the inhibitor during milling. Densification and hardness reached optimum levels for the 60 min milled powder for both pressureless sintering and sinter-HIP. Both properties decreased with increased milling time, regardless of the sintering method. Low temperature milling resulted in a higher hardness value of 1390 HV30 compared to 1326 HV30 for the 60 min, RT milled material after pressureless sintering. Densification levels of the doped materials were restricted to < 90% TD for both sintering methods due to inhomogeneity in the microstructures. Palmqvist fracture toughness (WK) of the RT milled powders increased with increased milling time and increasing WC grain size for both sintering methods. WK reached 11.6 MN.m3/2 with 300 min milling after pressureless sintering but reached 16.1 MN.m32 for the same material after sinter-HIP due to the effect of mean WC grain size and binder phase mean free path. The -30°C milled powder exhibited higher fracture toughness for both sintering methods than the 60 min, RT milled material. Spark plasma sintering (SPS) showed that the onset of densification was dependent upon particle size with the powder from 300 min milling showing an onset temperature of ~ 800°C compared to ~ 1000°C for the 60 min milled powder. The low temperature milled powder showed an onset temperature of ~ 980°C, which suggested that low temperature milling provided enhanced densification kinetics.
5

Synthesis and application of carbene complexes with heteroaromatic substituents /

Crause, Chantelle. January 2004 (has links)
Thesis (Ph.D.(Chemistry))--University of Pretoria, 2004. / Includes summary. Also available online.
6

Neuro- und Gliotoxizität von Wolframcarbid-basierten Nanopartikeln in vitro

Bastian, Susanne 12 October 2011 (has links) (PDF)
Die Anzahl neurodegenerativer Erkrankungen nimmt in unserer Gesellschaft stetig zu. Obwohl inzwischen eine Reihe genetischer Ursachen identifiziert worden sind, wird auch der Einfluss von Umweltfaktoren bei der Pathogenese dieser Erkrankungen zunehmend in Betracht gezogen. Der Beitrag von ultrafeinen Partikeln aus Industrie und Umwelt auf neurodegenerative Erkrankungen steht daher zunehmend im Fokus der Forschung. Die Translokation von ultrafeinen Partikeln bzw. Nanopartikeln ins Gehirn ist bekannt. Die Charakterisierung neuro- und gliotoxischer Wirkungen von Nanopartikeln in einem in vitro System war deshalb Ziel dieser Arbeit. Untersucht wurden Wolframcarbid-Partikel mit und ohne Cobalt, die im Herstellungsprozess von Hartmetallen von Bedeutung sind. Die meisten toxikologischen Daten wurden bisher mit mikrokristallinen WC-Pulvern an Lungenzellen bzw. -gewebe erhoben. Da aber die Verarbeitung von nanoskaligen Partikeln bessere Eigenschaften der Hartmetalle bewirkt, nimmt das Interesse an toxikologischen Studien mit WC-Nanopartikeln zu. Da die Gefahr der Translokation und Akkumulation im Gehirn beim Einatmen von Stäuben am Arbeitsplatz besteht, wurde erstmalig die Toxizität von WC-NP mit und ohne Cobalt auf Zellen des Gehirns untersucht. Für die Durchführung wurden primäre Neuronen, Astrozyten und Mikroglia sowie die Oligodendrozyten-vorläuferzelllinie OLN-93 der Ratte eingesetzt. Alle untersuchten Partikel konnten mittels Elektronenmikroskopie, ICP-Massenspektrometrie und Durchflusszytometrie in den verschiedenen Zelltypen nachgewiesen werden. Untersuchungen mit Cytochalasin D (Inhibitor der Aktinpolymerisation) deuteten auf zell- und partikelspezifische Aufnahmemechanismen hin. Experimente mit Cobaltchlorid und Natriumwolframat konnten beweisen, dass nicht die gelösten Ionen für die Toxizität von WC-Co ursächlich waren, sondern die Partikelform von entscheidender Bedeutung ist. Es zeigte sich jedoch, dass einige der WC-Co verursachten Effekte vermutlich auf dem Cobaltanteil beruhen. Offensichtlich dienen WC-Co-NP als Vehikel, um Cobalt in die Zellen einzuschleusen. Zur toxischen Wirkung trägt auch das Reaktionsvermögen von WC und Cobalt an der beiderseitigen Grenzfläche bei, denn dadurch können in der Zelle vermehrt reaktive Sauerstoffspezies gebildet werden. Im Rahmen der Untersuchungen wurden die zeit- und konzentrationsabhängigen Effekte der Nanopartikelexposition auf die Vitalität, die Proliferation, das Adhäsionsverhalten, das mitochondriale Membranpotential und die Induktion apoptotischer und nekrotischer Zelluntergänge untersucht. Dabei wurden verschiedene Vitalitäts- und Proliferationstests angewendet, um die häufig beobachteten Wechselwirkungen zwischen Reagenzien und Nanopartikeln auszuschließen. Nicht alle untersuchten Nanopartikel erwiesen sich in den durchgeführten Experimenten als akut toxisch. Nur eine Exposition mit WC-Co-NP führte nach 72 h zu einer deutlich verringerten Vitalität und Proliferation bei Astrozyten und OLN-93 Zellen. Eine Exposition mit WC-Co-NP zeigte des Weiteren eine geringe Induktion von Apoptose und Nekrose bei Astrozyten, nicht aber bei OLN-93 Zellen. Neurone wiesen nach einer Exposition mit NP eine wenig verringerte Vitalität auf. Es wurde festgestellt, dass erst die primäre Schädigung von Astrozyten zu einer sekundären Neuronenschädigung führt. Bei der Bewertung der NP-Toxizität müssen daher unbedingt die Wechselwirkungen der Zellen bedacht werden. Die Exposition mit WC- und WC-Co-NP beeinflusste das mitochondriale Membranpotential und das Adhäsionsverhalten der untersuchten Zellen. Neuronen und OLN-93 Zellen zeigten nach NP-Exposition eine verminderte Adhäsion. Auch physiologische Kalziummessungen lieferten einen Hinweis für die veränderte Funktionalität glialer Zellen nach einer NP-Exposition. Des Weiteren wurde die Expression einiger Gene, bedeutend für Adhäsion und extrazelluläre Matrix, mit realtime RT-PCR bei OLN-93-Zellen und Astrozyten überprüft. Es konnte eine Regulation von Mmp9, Timp1, Lama3, Tgfbi, Col8a1 und Hmox1 gezeigt werden. Zusammenfassend lässt sich feststellen, dass die ausgewählten Nanopartikel nicht per se neuro- und gliotoxisch wirkten. Die Partikel können anhand abnehmender Toxizität wie folgt geordnet werden: WC-Co > WC 100na > WC 10n. Auch die Reaktionen der Zellen fielen unterschiedlich aus: die Astrozyten erwiesen sich als die sensitivsten Zellen. Eine Exposition des Gehirns mit WC-Co-NP in hohen Konzentrationen oder über einen längeren Zeitraum könnte also weit reichende Folgen haben, angefangen bei einer gestörten Signalweiterleitung über eine erhöhte Permeabilität der Blut-Hirn-Schranke bis hin zu neurodegenerativen Veränderungen. Diese und weitere Untersuchungen könnten bei der Erstellung von Arbeitsrichtlinien im Umgang mit Hartmetallen, deren Ausgangsmaterial nanoskalige Pulver sind, hilfreich sein und damit einen Beitrag zum Schutz der Arbeiter liefern.
7

Analysis of cobalt, tantalum, titanium, vanadium and chromium in tungsten carbide by inductively coupled plasma - optical emission spectrometry.

Archer, Marcelle 23 May 2005 (has links)
Please read the abstract in the section 00front of this document / Dissertation (MSc (Chemistry))--University of Pretoria, 2007. / Chemistry / unrestricted
8

Neuro- und Gliotoxizität von Wolframcarbid-basierten Nanopartikeln in vitro

Bastian, Susanne 20 January 2011 (has links)
Die Anzahl neurodegenerativer Erkrankungen nimmt in unserer Gesellschaft stetig zu. Obwohl inzwischen eine Reihe genetischer Ursachen identifiziert worden sind, wird auch der Einfluss von Umweltfaktoren bei der Pathogenese dieser Erkrankungen zunehmend in Betracht gezogen. Der Beitrag von ultrafeinen Partikeln aus Industrie und Umwelt auf neurodegenerative Erkrankungen steht daher zunehmend im Fokus der Forschung. Die Translokation von ultrafeinen Partikeln bzw. Nanopartikeln ins Gehirn ist bekannt. Die Charakterisierung neuro- und gliotoxischer Wirkungen von Nanopartikeln in einem in vitro System war deshalb Ziel dieser Arbeit. Untersucht wurden Wolframcarbid-Partikel mit und ohne Cobalt, die im Herstellungsprozess von Hartmetallen von Bedeutung sind. Die meisten toxikologischen Daten wurden bisher mit mikrokristallinen WC-Pulvern an Lungenzellen bzw. -gewebe erhoben. Da aber die Verarbeitung von nanoskaligen Partikeln bessere Eigenschaften der Hartmetalle bewirkt, nimmt das Interesse an toxikologischen Studien mit WC-Nanopartikeln zu. Da die Gefahr der Translokation und Akkumulation im Gehirn beim Einatmen von Stäuben am Arbeitsplatz besteht, wurde erstmalig die Toxizität von WC-NP mit und ohne Cobalt auf Zellen des Gehirns untersucht. Für die Durchführung wurden primäre Neuronen, Astrozyten und Mikroglia sowie die Oligodendrozyten-vorläuferzelllinie OLN-93 der Ratte eingesetzt. Alle untersuchten Partikel konnten mittels Elektronenmikroskopie, ICP-Massenspektrometrie und Durchflusszytometrie in den verschiedenen Zelltypen nachgewiesen werden. Untersuchungen mit Cytochalasin D (Inhibitor der Aktinpolymerisation) deuteten auf zell- und partikelspezifische Aufnahmemechanismen hin. Experimente mit Cobaltchlorid und Natriumwolframat konnten beweisen, dass nicht die gelösten Ionen für die Toxizität von WC-Co ursächlich waren, sondern die Partikelform von entscheidender Bedeutung ist. Es zeigte sich jedoch, dass einige der WC-Co verursachten Effekte vermutlich auf dem Cobaltanteil beruhen. Offensichtlich dienen WC-Co-NP als Vehikel, um Cobalt in die Zellen einzuschleusen. Zur toxischen Wirkung trägt auch das Reaktionsvermögen von WC und Cobalt an der beiderseitigen Grenzfläche bei, denn dadurch können in der Zelle vermehrt reaktive Sauerstoffspezies gebildet werden. Im Rahmen der Untersuchungen wurden die zeit- und konzentrationsabhängigen Effekte der Nanopartikelexposition auf die Vitalität, die Proliferation, das Adhäsionsverhalten, das mitochondriale Membranpotential und die Induktion apoptotischer und nekrotischer Zelluntergänge untersucht. Dabei wurden verschiedene Vitalitäts- und Proliferationstests angewendet, um die häufig beobachteten Wechselwirkungen zwischen Reagenzien und Nanopartikeln auszuschließen. Nicht alle untersuchten Nanopartikel erwiesen sich in den durchgeführten Experimenten als akut toxisch. Nur eine Exposition mit WC-Co-NP führte nach 72 h zu einer deutlich verringerten Vitalität und Proliferation bei Astrozyten und OLN-93 Zellen. Eine Exposition mit WC-Co-NP zeigte des Weiteren eine geringe Induktion von Apoptose und Nekrose bei Astrozyten, nicht aber bei OLN-93 Zellen. Neurone wiesen nach einer Exposition mit NP eine wenig verringerte Vitalität auf. Es wurde festgestellt, dass erst die primäre Schädigung von Astrozyten zu einer sekundären Neuronenschädigung führt. Bei der Bewertung der NP-Toxizität müssen daher unbedingt die Wechselwirkungen der Zellen bedacht werden. Die Exposition mit WC- und WC-Co-NP beeinflusste das mitochondriale Membranpotential und das Adhäsionsverhalten der untersuchten Zellen. Neuronen und OLN-93 Zellen zeigten nach NP-Exposition eine verminderte Adhäsion. Auch physiologische Kalziummessungen lieferten einen Hinweis für die veränderte Funktionalität glialer Zellen nach einer NP-Exposition. Des Weiteren wurde die Expression einiger Gene, bedeutend für Adhäsion und extrazelluläre Matrix, mit realtime RT-PCR bei OLN-93-Zellen und Astrozyten überprüft. Es konnte eine Regulation von Mmp9, Timp1, Lama3, Tgfbi, Col8a1 und Hmox1 gezeigt werden. Zusammenfassend lässt sich feststellen, dass die ausgewählten Nanopartikel nicht per se neuro- und gliotoxisch wirkten. Die Partikel können anhand abnehmender Toxizität wie folgt geordnet werden: WC-Co > WC 100na > WC 10n. Auch die Reaktionen der Zellen fielen unterschiedlich aus: die Astrozyten erwiesen sich als die sensitivsten Zellen. Eine Exposition des Gehirns mit WC-Co-NP in hohen Konzentrationen oder über einen längeren Zeitraum könnte also weit reichende Folgen haben, angefangen bei einer gestörten Signalweiterleitung über eine erhöhte Permeabilität der Blut-Hirn-Schranke bis hin zu neurodegenerativen Veränderungen. Diese und weitere Untersuchungen könnten bei der Erstellung von Arbeitsrichtlinien im Umgang mit Hartmetallen, deren Ausgangsmaterial nanoskalige Pulver sind, hilfreich sein und damit einen Beitrag zum Schutz der Arbeiter liefern.
9

Micro-Raman spectroscopy and dry turning evaluations of nanostructured diamond films deposited on tungsten-carbide lathe inserts

Lawson, Thomas Ryan. January 2008 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2008. / Description based on contents viewed June 2, 2008; title from title screen. Includes bibliographical references (p. 36).

Page generated in 0.0819 seconds