• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison Of 2d And 3d Finite Element Models Of Tunnel Advance In Soft Ground A Case Study: Bolu Tunnels

Serkan, Ucer 01 May 2006 (has links) (PDF)
The Bolu Tunnels lie along Trans European Motorway (TEM) which is connecting Eastern Europe with the Middle East. The tunnels are approximately 3.0 km long, 40 m apart and have excavated cross sections more than 200 m2. In construction, New Austrian Tunneling Method (NATM) was used in soft ground. Due to the challenging ground conditions, many problems have been encountered during tunnelling. To solve these problems special construction techniques were adapted. To simulate and demonstrate the effectiveness of these construction techniques, 2D and 3D Finite Element Methods are utilized in this study. Through comparison between 2D and 3D modelling of advance of Bolu Tunnels, respective merits of these two approaches are investigated and the conditions under which shortcomings of the 2D approach become serious are identified.
2

Two-dimensional Numerical Analysis Of Tunnel Collapse Driven In Poor Ground Conditions

Turkoglu, Melih 01 January 2013 (has links) (PDF)
Insufficient information on the host medium can cause serious problems, even collapse, during construction in a tunnel. This study focuses on understanding the reasons behind the collapse of the Tunnel BT24 to be opened within the framework of Ankara-Istanbul High Speed Railway Project. The tunnel is located near Boz&uuml / y&uuml / k in the Bilecik Province. The collapsed section of the tunnel was driven into a highly weathered, weak to medium rock mass. Unanticipated geological/geotechnical circumstances caused excessive deformations at the section on which the primary support system was applied, leading eventually to collapse. To understand the response of the tunnel and the collapse mechanism, the construction sequence is simulated using two-dimensional plane-strain and axisymmetric finite element models. The analyses were carried out for the section with and without invert closure of the shotcrete liner. To implement the effects of likely unfavorable ground conditions on the tunnel response, a number of fault scenarios and possible creep effects were also considered with those two alternatives. Displacements in the tunnel periphery, forces and moments in the primary liner as well as the plastic deformation zones in the surrounding ground were determined for each case and comprasions were made accordingly. It is concluded that the unforseen ground circumstances might have substantially aggravated the deformations in the section and that the lack of ring closure of the primary liner at invert played the key role in the collapse.

Page generated in 0.0298 seconds