• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • Tagged with
  • 14
  • 14
  • 11
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational Design of a Vertical Wind Tunnel for Stable Droplet Levitation

Nawaz, Muneebullah 10 May 2023 (has links)
The efficient study of liquid droplets ranging from micrometers to a few centimeters by levitation is usually hindered by conventional design limitations. This is due to continuous droplet deformation in the test section. This research discusses the development of a robust design methodology for large droplet-stabilization (d > Capillary Number (Ca)) vertical wind tunnels. A modeling and simulation design environment has been developed that involves component sizing and integration at a central ANSYS-Fluent platform, followed by design optimization. The work inculcates numerical analysis of guide vanes to minimize the viscous losses and, subsequently, the wind tunnel dimensions. The process is followed by the design of honeycomb and wire screens and their analyses for a given geometry. A multi-variable design optimization problem has been optimized with response surface approximations. Statistical modeling of the expensive functions obtained from the solution of Navier-stokes equations has been accomplished in order to deal with non-linear and discontinuous behavior. Numerical optimization of the meta-model can help to find the most feasible wind tunnel design with computational efficiency. A non-conventional design with varying test area cross-sections has been introduced to investigate the droplet stability in constantly changing velocity profiles. Longitudinal as well as lateral velocity variations in the test section, creating velocity buckets with minimum turbulence intensity, has been introduced and analyzed using novel concept designs. The research highlights a systematic design methodology and an alternate configuration for liquid droplet wind tunnels while focusing on stable droplet levitation.
2

Jet Grout Bottom Plug in Deep Excavations : Numerical Analysis of a Tunnel Project

Schjelderup, Ida January 2022 (has links)
This master thesis has investigated the performance of a deep excavation with a jet grout bottom plug used to prevent bottom heave and hydraulic uplift failure. The concept of a jet grout plug as a structural and sealing component in a specific case was studied, namely one of the tunnel sections of The West Link tunnel project in Gothenburg. The section was to be built as a cut-and-cover tunnel with the excavation shaft consisting of secant pile walls, struts and a jet grout bottom plug. It is to be established where there are a lot of sensitive buildings and constructions close to the excavation site. This makes it important not to disturb the surroundings during construction with, for example, settlements.The study was carried out by doing a literature study, analytical calculations and numerical simulations in the finite element software PLAXIS 2D. More specifically, the checks evaluated were uplift equilibrium of the jet grout plug and of the whole structure, structural performance of the jet grouted plug and hydraulic conductivity of the jet grouted mass.The results show a design of a jet grout plug that together with the additional structures works sufficiently enough to make a secure construction for a deep excavation below the ground water table. The structural performance of the jet grouted plug to function as a strut level is fulfilled even if the jet grout is not perfectly performed. To work as a sealing component the jet grout column pattern and the centre-to-centre distance between the columns are important factors together with the alignment and diameter of the jet grout columns. To make a completely watertight construction is however almost impossible in this case since the jet grout plug is located at a large depth (around 20 m). To work properly against failure by uplift it does not need to be completely watertight. Instead, the use of relief wells makes sure that the pore water pressure is not larger than the vertical stress from the soil, otherwise failure by uplift is a real danger. Furthermore, to work properly against settlements it is not only the water tightness of the jet grout plug that decides whether it will work properly. Instead, it is also the pumping and infiltration system together with the, in this case, sensitivity of the lower aquifer that decides the risk of settlements.
3

Ending impunity : establishing the legitimacy of the International Criminal Court

Melvin, David J. 01 January 2008 (has links)
In 1998, the Rome Statute established the International Criminal Court (ICC) to end impunity for violators of international human rights law. As the ICC is opening criminal investigations for the first time in its existence, it is important to determine the legitimacy of the young institution in order to understand its importance in international politics and international legal precedence. These first cases can be used to illustrate that while some fears might be misplaced, others are sadly realized. Especially through the criminal investigation processes in Darfur, the ICC has acted responsibly and has not violated its founding principles or Sudan's sovereignty. Conversely, ICC intervention in Uganda has created a political situation that pits the prospect of peace against the pursuit of justice. If the ICC is able to prove that it is responsible in its judicial processes, it will likely become a legitimized institution. An increased role by the international community in ICC affairs would also bring a level of comfort and transparency that has not yet been realized. Furthermore, as individual states begin to use diplomatic means to enforce the norms of international human rights, the court might be used infrequently, and only when it is critical in the pursuit of justice. Despite the difficulties. faced by the ICC, it has the potential to gain legitimacy and become a recognizable player on the international political scene.
4

Portable wind tunnel design

Baydono, David, Sleiman, Salam January 2024 (has links)
Wind tunnels are important tools used in physics and engineering, with a wide range of usability and applications in industrial, research, and educational settings. A wind tunnel holds an object steady while generating airflow over it, often to study the interaction between the object and the airflow. The design of wind tunnels can be very costly, extensive, and difficult to implement. This paper analyzes literature on wind tunnels to compile a method for designing a portable wind tunnel suitable for educational and demonstrative purposes. The method includes design guidelines for each component, including the test section, contraction, settling chamber, honeycomb, diffuser, and fan section. A blueprint for a wind tunnel with specified dimensions is presented. The blueprint is designed to fit a Boeing 747-200 model, scaled at 1:390, and therefore have a 40 cm long test section with a 20x20 cm square cross-section. The designed wind tunnel achieves a velocity of 5 m/s in the test section. Emphasizing portability, simplicity, and functionality, this wind tunnel design enhances educational experiences, making complex fluid dynamics concepts accessible and engaging for students.
5

Portable wind tunnel design​

Baydono, David, Sleiman, Salam January 2024 (has links)
Wind tunnels are important tools used in physics and engineering, with a wide range of usability and applications in industrial, research, and educational settings. A wind tunnel holds an object steady while generating airflow over it, often to study the interaction between the object and the airflow. The design of wind tunnels can be very costly, extensive, and difficult to implement. This paper analyzes literature on wind tunnels to compile a method for designing a portable wind tunnel suitable for educational and demonstrative purposes. The method includes design guidelines for each component, including the test section, contraction, settling chamber, honeycomb, diffuser, and fan section. A blueprint for a wind tunnel with specified dimensions is presented. The blueprint is designed to fit a Boeing 747-200 model, scaled at 1:390, and therefore have a 40 cm long test section with a 20x20 cm square cross-section. The designed wind tunnel achieves a velocity of 5 m/s in the test section. Emphasizing portability, simplicity, and functionality, this wind tunnel design enhances educational experiences, making complex fluid dynamics concepts accessible and engaging for students.
6

Development of Design Procedures for Fiber Reinforced Concrete (FRC) & Ultra-High-Performance Concrete (UHPC) Based on Experimental Evaluations

January 2018 (has links)
abstract: A comprehensive study was performed on non-proprietary ultra-high-performance concrete (UHPC) material and several design methods were suggested based on numerous experimental results. Several sets of compression tests, direct tensile tests, and flexural tests were performed on UHPC to provide a better understanding of the mechanisms involved in the mechanical behavior of the fiber reinforced material. In addition to compressive tests, flexural tests, based on ASTM C1609 and EN 14651, were performed. The effect of the strain rate on the UHPC material was also investigated through the high-speed tensile tests at different strain rates. Alongside the usual measurement tools such as linear variable differential transformers (LVDT) and clip gages, digital image correlation (DIC) method was also used to capture the full-range deformations in the samples and localized crack propagations. Analytical approaches were suggested, based on the experimental results of the current research and other research groups, to provide design solutions for different applications and design approaches for UHPC and hybrid reinforced concrete (HRC) sections. The suggested methods can be used both in the ultimate limit state (ULS) and the serviceability limit state (SLS) design methods. Closed form relationships, based on the non-linear design of reinforced concrete, were used in the calculation of the load-deflection response of UHPC. The procedures were used in obtaining material properties from the flexural data using procedures that are based on back-calculation of material properties from the experimental results. Model simulations were compared with other results available in the literature. Performance of flexural reinforced UHPC concrete beam sections tested under different types of loading was addressed using a combination of fibers and rebars. The same analytical approach was suggested for the fiber reinforced concrete (FRC) sections strengthened (rehabilitated) by fiber reinforced polymers (FRP) and textile reinforced concrete (TRC). The objective is to validate the proper design procedures for flexural members as well as connection elements. The proposed solutions can be used to reduce total reinforcement by means of increasing the ductility of the FRC, HRC, and UHPC members in order to meet the required flexural reinforcement, which in some cases leads to total elimination of rebars. / Dissertation/Thesis / Masters Thesis Civil, Environmental and Sustainable Engineering 2018
7

Establishing very low speed, disturbance-free flow for anemometry in turbulent boundary layers

Lanspeary, Peter V. January 1998 (has links)
This document addresses problems encountered when establishing the very low air-flow speeds required for experimental investigations of the mechanisms of low-Reynolds-number boundary-layer turbulence. Small-scale motions in the near-wall region are important features of turbulent boundary-layer dynamics, and, if these features are to be resolved by measurements in air with conventionally-sized hot-wire probes, a well-behaved canonical turbulent boundary layer must be developed at free stream flow speeds no higher than 4 m/s. However, at such low speeds, the turbulent boundary layers developed on the walls of a wind tunnel are very susceptible to perturbation by non-turbulent time-dependent flow structures which originate upstream from the test section in the laminar flow at the inlet and in the contraction. Four different non-turbulent flow structures have been identified. The first is a result of quasi-two-dimensional separation of the laminar boundary-layer from the surfaces of the wind-tunnel contraction. Potential flow simulations show that susceptibility to this form of separation is reduced by increasing the degree of axisymmetry in the cross-section geometry and by decreasing the streamwise curvature of the concave surfaces. The second source of time-dependence in the laminar boundary-layer flow is an array of weak streamwise vortices produced by Goertler instability. The Goertler vortices can be removed by boundary-layer suction at the contraction exit. The third form of flow perturbation, revealed by visualisation experiments with streamers, is a weak large-scale forced-vortex swirl produced by random spatial fluctuations of temperature at the wind-tunnel inlet. This can be prevented by thorough mixing of the inlet flow; for example, a centrifugal blower installed at the inlet reduces the amplitude of temperature nonuniformity by a factor of about forty and so prevents buoyancy-driven swirl. When subjected to weak pressure gradients near the start of a wind-tunnel contraction, Goertler vortices in laminar wall layers can develop into three-dimensional separations with strong counter-rotating trailing vortices. These trailing vortices are the fourth source of unsteady flow in the test-section. They can be suppressed by a series of appropriately located screens which remove the low-speed-streak precursors of the three-dimensional separations. Elimination of the above four contaminating secondary flows permits the development of a steady uniform downstream flow and well-behaved turbulent wall layers. Measurements of velocity in the turbulent boundary layer of the test-section have been obtained by hot-wire anemometry. When a hot-wire probe is located within the viscous sublayer, heat transfer from the hot-wire filament to the wall produces significant errors in the measurements of both the mean and the fluctuating velocity components. This error is known as wall-proximity effect and two successful methods are developed for removing it from the hot-wire signal. The first method is based on the observation that, if all experimental parameters except flow speed and distance from the wall are fixed, the velocity error may be expressed nondimensionally as a function of only one parameter, in the form DeltaU^+=f(y^+). The second method, which also accommodates the effect of changing the hot-wire overheat ratio, is based on a dimensional analyis of heat transfer to the wall. Velocity measurements in the turbulent boundary layer at the mid-plane of a nearly square test-section duct have established that, when the boundary-layer thickness is less than one quarter of the duct height, mean-velocity characteristics are indistinguishable from those of a two-dimensional flat-plate boundary layer. In thicker mid-plane boundary layers, the mean-velocity characteristics are affected by stress-induced secondary flow and by lateral constriction of the boundary-layer wake region. A significant difference between flat-plate and duct boundary layers is also observed in momentum-balance calculations. The momentum-integral equation for a duct requires definitions of momentumd and displacement thickness which are different from those given for flat-plate boundary layers. Momentum-thickness growth rates predicted by the momentum-integral equation for a duct agree closely with measurements of the newly defined duct momentum thickness. Such agreement cannot be obtained in terms of standard flat-plate momentum thickness. In duct boundary layers with Reynolds numbers Re_theta between 400 and 2600, similarity in the wake-region distributions of streamwise turbulence statistics has been obtained by normalising distance from the wall with the flat-plate momentum thickness, theta_2. This result indicates that, in contrast with the mean velocity characteristics, the structure of mid-plane turbulence does not depend on the proportion of duct cross-section occupied by boundary layers and is essentially the same as in a flat-plate boundary layer. For Reynolds numbers less than 400, both wall-region and wake-region similarity fail because near-wall turbulence events interact strongly with the free stream flow and because large scale turbulence motions are directly influenced by the wall. In these conditions, which exist in both duct and flat-plate turbulent boundary layers, there is no distinct near-wall or wake region, and the behaviour of turbulence throughout the boundary layer depends on both wall variables and on outer region variables simultaneously. / Thesis (Ph.D.)--School of Mechanical Engineering, 1998.
8

Establishing very low speed, disturbance-free flow for anemometry in turbulent boundary layers

Lanspeary, Peter V. January 1998 (has links)
This document addresses problems encountered when establishing the very low air-flow speeds required for experimental investigations of the mechanisms of low-Reynolds-number boundary-layer turbulence. Small-scale motions in the near-wall region are important features of turbulent boundary-layer dynamics, and, if these features are to be resolved by measurements in air with conventionally-sized hot-wire probes, a well-behaved canonical turbulent boundary layer must be developed at free stream flow speeds no higher than 4 m/s. However, at such low speeds, the turbulent boundary layers developed on the walls of a wind tunnel are very susceptible to perturbation by non-turbulent time-dependent flow structures which originate upstream from the test section in the laminar flow at the inlet and in the contraction. Four different non-turbulent flow structures have been identified. The first is a result of quasi-two-dimensional separation of the laminar boundary-layer from the surfaces of the wind-tunnel contraction. Potential flow simulations show that susceptibility to this form of separation is reduced by increasing the degree of axisymmetry in the cross-section geometry and by decreasing the streamwise curvature of the concave surfaces. The second source of time-dependence in the laminar boundary-layer flow is an array of weak streamwise vortices produced by Goertler instability. The Goertler vortices can be removed by boundary-layer suction at the contraction exit. The third form of flow perturbation, revealed by visualisation experiments with streamers, is a weak large-scale forced-vortex swirl produced by random spatial fluctuations of temperature at the wind-tunnel inlet. This can be prevented by thorough mixing of the inlet flow; for example, a centrifugal blower installed at the inlet reduces the amplitude of temperature nonuniformity by a factor of about forty and so prevents buoyancy-driven swirl. When subjected to weak pressure gradients near the start of a wind-tunnel contraction, Goertler vortices in laminar wall layers can develop into three-dimensional separations with strong counter-rotating trailing vortices. These trailing vortices are the fourth source of unsteady flow in the test-section. They can be suppressed by a series of appropriately located screens which remove the low-speed-streak precursors of the three-dimensional separations. Elimination of the above four contaminating secondary flows permits the development of a steady uniform downstream flow and well-behaved turbulent wall layers. Measurements of velocity in the turbulent boundary layer of the test-section have been obtained by hot-wire anemometry. When a hot-wire probe is located within the viscous sublayer, heat transfer from the hot-wire filament to the wall produces significant errors in the measurements of both the mean and the fluctuating velocity components. This error is known as wall-proximity effect and two successful methods are developed for removing it from the hot-wire signal. The first method is based on the observation that, if all experimental parameters except flow speed and distance from the wall are fixed, the velocity error may be expressed nondimensionally as a function of only one parameter, in the form DeltaU^+=f(y^+). The second method, which also accommodates the effect of changing the hot-wire overheat ratio, is based on a dimensional analyis of heat transfer to the wall. Velocity measurements in the turbulent boundary layer at the mid-plane of a nearly square test-section duct have established that, when the boundary-layer thickness is less than one quarter of the duct height, mean-velocity characteristics are indistinguishable from those of a two-dimensional flat-plate boundary layer. In thicker mid-plane boundary layers, the mean-velocity characteristics are affected by stress-induced secondary flow and by lateral constriction of the boundary-layer wake region. A significant difference between flat-plate and duct boundary layers is also observed in momentum-balance calculations. The momentum-integral equation for a duct requires definitions of momentumd and displacement thickness which are different from those given for flat-plate boundary layers. Momentum-thickness growth rates predicted by the momentum-integral equation for a duct agree closely with measurements of the newly defined duct momentum thickness. Such agreement cannot be obtained in terms of standard flat-plate momentum thickness. In duct boundary layers with Reynolds numbers Re_theta between 400 and 2600, similarity in the wake-region distributions of streamwise turbulence statistics has been obtained by normalising distance from the wall with the flat-plate momentum thickness, theta_2. This result indicates that, in contrast with the mean velocity characteristics, the structure of mid-plane turbulence does not depend on the proportion of duct cross-section occupied by boundary layers and is essentially the same as in a flat-plate boundary layer. For Reynolds numbers less than 400, both wall-region and wake-region similarity fail because near-wall turbulence events interact strongly with the free stream flow and because large scale turbulence motions are directly influenced by the wall. In these conditions, which exist in both duct and flat-plate turbulent boundary layers, there is no distinct near-wall or wake region, and the behaviour of turbulence throughout the boundary layer depends on both wall variables and on outer region variables simultaneously. / Thesis (Ph.D.)--School of Mechanical Engineering, 1998.
9

On recessed cavity flame-holders in supersonic cross-flows

Retaureau, Ghislain J. 03 April 2012 (has links)
Flame-holding in a recessed cavity is investigated experimentally in a Mach 2.5 preheated cross-flow for both stable and unstable combustion, with a relatively low preheating. Self-sustained combustion is investigated for stagnation pressures and temperatures reaching 1.4 MPa and 750 K. In particular, cavity blowout is characterized with respect to cavity aspect ratio (L/D =2.84 - 3.84), injection strategy (floor - ramp), aft ramp angle (90 deg - 22.5 deg) and multi-fuel mixture (CH₄-H₂ or CH₄-C₂H₄ blends). The results show that small hydrogen addition to methane leads to significant increase in flame stability, whereas ethylene addition has a more gradual effect. Since the multi-fuels used here are composed of a slow and a fast chemistry fuel, the resulting blowout region has a slow (methane dominant) and a fast (hydrogen or ethylene dominant) branch. Regardless of the fuel composition, the pressure at blowout is close to the non-reacting pressure imposed by the cross-flow, suggesting that combustion becomes potentially unsustainable in the cavity at the sub-atmospheric pressures encountered in these supersonic studies. The effect of preheating is also investigated and results show that the stability domain broadens with increasing stagnation temperature. However, smaller cavities appear less sensitive to the cross-flow preheating, and stable combustion is achieved over a smaller range of fuel flow rate, which may be the result of limited residence and mixing time. The blowout data point obtained at lower fuel flow rate fairly matches the empirical model developed by Rasmussen et al. for floor injection phi = 0.0028 Da^-.8, where phi is the equivalence ratio and Da the Damkohler number. An alternate model is proposed here that takes into account the ignition to scale the blowout data. Since the mass of air entrained into the cavity cannot be accurately estimated and the cavity temperature is only approximated from the wall temperature, the proposed scaling has some uncertainty. Nevertheless the new phi-Da scaling is shown to preserve the subtleties of the blowout trends as seen in the current experimental data.
10

Preliminary Design of a High-Enthalpy Hypersonic Wind Tunnel Facility and Analysis of Flow Interactions in a High-Speed Missile Configuration

Joshua Craig Ownbey (10721112) 02 August 2021 (has links)
An approach for designing a high-enthalpy wind tunnel driven by exothermic chemical reactions was developed. Nozzle contours were designed using CONTUR, a program implementing the method of characteristics, to design nozzle contours at various flow conditions. A reacting mixture including nitrous oxide has been identified as the best candidate for providing clean air at high temperatures. The nitrous oxide has a few performance factors that were considered, specifically the combustion of the gas. Initial CFD simulations were performed on the nozzle and test region to validate flow characteristics and possible issues. Initial results show a fairly uniform exit velocity and ability to perform testing. In a second phase of the work, two generic, high-speed missile configurations were explored using numerical simulation. The mean flow was computed on both geometries at 0 and 45 roll and 0, 1, and 10 angle of attack. The computations identified complex flow structures, including three-dimensional shock/boundary-layer interactions, that varied considerably with angle of attack.

Page generated in 0.0575 seconds